Diabetic retinopathy constitutes the most frequent cause of vision loss in professionally active individuals. Progressive impairment of visual acuity results from massive fibrovascular proliferation involving the fundus of the eye, as well as from the apoptosis of the neuronal structures of the retina. The results of many clinical studies, both on experimental models and on human material, confirmed evident enhancement of this process in the course of diabetes. The programmed cell death of retinal ganglion cells predominantly occurs secondarily to caspase-dependent intracellular processes. This paper presents evidence for the considerable involvement of the caspase-dependent mechanism of apoptosis of retinal ganglion cells in the early stages of retinal changes associated with progressive impairment of visual acuity. The authors emphasize the necessity of comprehensive understanding of mechanisms that underlie the programmed death of neural cells in the eyes of patients with diabetes. This clinical problem becomes of vital importance in view of the constantly increasing incidence of diabetes and severe impairment associated with the disorders of carbohydrate metabolism. Identification of a key component involved in this process would enable attempts oriented at pharmacological blockade of apoptosis in the retinal ganglion cells of patients with diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.17219/acem/31805DOI Listing

Publication Analysis

Top Keywords

retinal ganglion
16
ganglion cells
16
apoptosis retinal
12
diabetic retinopathy
8
progressive impairment
8
impairment visual
8
visual acuity
8
patients diabetes
8
retinal
5
cells
5

Similar Publications

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

Purpose: Differentiating between Alzheimer's disease (AD) and frontotemporal dementia (FTD) can be challenging due to overlapping cognitive and behavioral manifestations. Evidence regarding non-invasive and early-stage biomarkers remains limited. Our aim was to identify retinal biomarkers for the risk of AD and FTD in populations without dementia and explore underlying brain structural mechanisms.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Purpose: In this study, it was planned to compare the macular ganglion cell analysis (GCA) and peripapillary retinal nerve fiber layer (pRNFL) of the patients with preperimetric glaucoma (PPG), early stage glaucoma (EG) and the control group.

Methods: This retrospective study included a total of 103 eyes: 38 from EG patients, 30 from PPG patients, and 35 from healthy individuals at Ankara Bilkent City Hospital Glaucoma Unit between January 2018 and September 2021. Eyes were categorized into control, PPG, and EG groups based on visual field (VF) classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!