Gut-derived bacterial LPS plays an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor in necrotizing enterocolitis and inflammatory bowel disease. The defective intestinal tight junction barrier was shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, causes an increase in intestinal tight junction permeability (TJP) via a TLR4-dependent process; however, the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal tight junction barrier using in vitro and in vivo model systems. LPS caused a TLR4-dependent activation of membrane-associated adaptor protein focal adhesion kinase (FAK) in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and -independent pathways. Small interfering RNA silencing of MyD88 prevented an LPS-induced increase in TJP. LPS caused MyD88-dependent activation of IL-1R-associated kinase 4. TLR4, FAK, and MyD88 were colocalized. Small interfering silencing of TLR4 inhibited TLR4-associated FAK activation, and FAK knockdown prevented MyD88 activation. In vivo studies also confirmed that the LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented an LPS-induced increase in intestinal permeability. Additionally, high-dose LPS-induced intestinal inflammation was dependent on the TLR4/FAK/MyD88 signal transduction axis. To our knowledge, our data show for the first time that the LPS-induced increases in intestinal TJP and intestinal inflammation were regulated by TLR4-dependent activation of the FAK/MyD88/IL-1R-associated kinase 4 signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637237 | PMC |
http://dx.doi.org/10.4049/jimmunol.1402598 | DOI Listing |
J Adv Res
January 2025
School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:
Introduction: In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.
Objectives: This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.
J Med Food
January 2025
Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain.
Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xin min Street, Changchun, 130021, China.
Inflammatory bowel disorders (IBD) can lead to severe complications like perforation, bleeding, and colon cancer, posing life-threatening risks. Murray ( Murr.), rich in polysaccharides, has been utilized in traditional diets for thousands of years.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou 311400, China.
To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Pharmacy, Shandong University of Traditional Chinese Medicine Ji'nan 250355, China National Key Laboratory of Integration and Innovation of Prescriptions and Modern Traditional Chinese Medicine,Lunan Pharmaceutical Group Co., Ltd. Linyi 273400,China.
This paper explored the protective effect and potential mechanism of Shouhui Tongbian Capsules(SHTB) on cerebral ischemia-reperfusion rat models. Rats were randomly divided into sham surgery group, model group, low-dose SHTB group(0.2 g·kg~(-1)·d~(-1)), high-dose SHTB group(SHTB g·kg~(-1)·d~(-1)), and an edaravone positive drug group(5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!