The Formosan subterranean termite (Coptotermes formosanus) is an important worldwide pest, each year causing millions of dollars in structural damage and control costs. Termite colonies are composed of several phenotypically distinct castes. Termites utilize these multiple castes to efficiently perform unique roles within the colony. During the molting/caste differentiation process, multiple genes are believed to be involved in the massive reorganization of the body plan. The objective of this research was to analyze the muscle gene, myosin, to further understand the role it plays in C. formosanus development. We find that comparing worker vs. solider caste myosin gene expression is up-regulated in the soldier and a myosin antibody-reactive protein suggests changes in splicing. Comparison of body regions of mature soldier and worker castes indicates a greater level of myosin transcript in the heads. The differential expression of this important muscle-related gene is anticipated considering the large amount of body plan reorganization and muscle found in the soldier caste. These results have a direct impact on our understanding of the downstream genes in the caste differentiation process and may lead to new targets for termite control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553571 | PMC |
http://dx.doi.org/10.3390/insects3041190 | DOI Listing |
Zhonghua Xin Xue Guan Bing Za Zhi
January 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100037, China.
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America.
Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
Traditional transcriptomic studies often overlook the complex heterogeneity of skeletal muscle, as they typically isolate RNA from mixed muscle fibre and cell populations, resulting in an averaged transcriptomic profile that obscures fibre type-specific differences. This study assessed the potential of the recently developed Xenium platform for high-resolution spatial transcriptomic analysis of human skeletal muscle histological sections. Human vastus lateralis muscle samples from two individuals were analysed using the Xenium platform and Human Multi-Tissue and Cancer Panel targeting 377 genes complemented by staining of successive sections for Myosin Heavy Chain isoforms to differentiate between type 1 and type 2 muscle fibres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!