Advances in Biomedical Imaging, Bioengineering, and Related Technologies for the Development of Biomarkers of Pancreatic Disease: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases and National Institute of Biomedical Imaging and Bioengineering Workshop.

Pancreas

From the *Department of Biomedical Engineering, University of Virginia, Charlottesville, VA; †Eppley Cancer Institute, University of Nebraska School of Medicine, Omaha, NE; ‡Division of Gastroenterology, Hepatology and Nutrition, Departments of Medicine and Anesthesiology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA; §Office of Cancer Nanotechnology Research and the Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD; ∥Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; ¶Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD; and #Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.

Published: November 2015

A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of Biomedical Imaging and Bioengineering focused on research gaps and opportunities in the development of new biomarkers of pancreatic disease. The session was held on July 22, 2015, and structured into 6 sessions: 1) Introduction and Overview; 2) Keynote Address; 3) New Approaches to the Diagnosis of Chronic Pancreatitis; 4) Biomarkers of Pain and Inflammation; 5) New Approaches to the Detection of Pancreatic Cancer; and 6) Shed Exosomes, Shed Cells, and Shed Proteins. Recent advances in the fields of pancreatic imaging, functional markers of pancreatic disease, proteomics, molecular and cellular imaging, and detection of circulating cancer cells and exosomes were reviewed. Knowledge gaps and research needs were highlighted. The development of new methods for the noninvasive determination of pancreatic pathology; the use of cellular markers of pancreatic function, inflammation, pain, and malignancy; and the refinement of methods to identify cells and cellular constituents of pancreatic cancer were discussed. The further refinement of sophisticated technical methods and the need for clinical studies to validate these new approaches in large-scale studies of patients at risk for the development of pancreatic disease were repeatedly emphasized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608388PMC
http://dx.doi.org/10.1097/MPA.0000000000000552DOI Listing

Publication Analysis

Top Keywords

pancreatic disease
16
national institute
16
biomedical imaging
12
imaging bioengineering
12
pancreatic
9
development biomarkers
8
biomarkers pancreatic
8
institute diabetes
8
diabetes digestive
8
digestive kidney
8

Similar Publications

Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.

View Article and Find Full Text PDF

Extrinsic apoptotic network is driven by Death Ligand (DL)-mediated activation of procaspase-8. Recently, we have developed the first-in class small molecule, FLIPinB, which specifically targets the key regulator of extrinsic apoptosis, the protein c-FLIP, in the caspase-8/c-FLIP heterodimer. We have shown that FLIPinB enhances DL-induced caspase-8 activity and apoptosis.

View Article and Find Full Text PDF

Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver tumour presenting at a young age. Aggressive surgery of FL-HCC is the mainstay of management unlike other malignancies where metastatic stage precludes curative surgery. There are limited reports of response of FL-HCC to systemic therapies predominantly owing to its rarity.

View Article and Find Full Text PDF

Objective Ultrasound is the predominant modality in medical practice for evaluating thyroid nodules. Currently, diagnosis is typically based on textural information. This study aims to develop an automated texture classification approach to aid physicians in interpreting ultrasound images of thyroid nodules.

View Article and Find Full Text PDF

MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis.

Int Immunopharmacol

January 2025

Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China. Electronic address:

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!