Phase stability and lattice dynamics of ammonium azide under hydrostatic compression.

Phys Chem Chem Phys

Department of Physics, IIT Palakkad, Kozhipara, Palakkad 678557, Kerala, India.

Published: November 2015

We have investigated the effect of hydrostatic pressure and temperature on phase stability of hydro-nitrogen solids using dispersion corrected density functional theory calculations. From our total energy calculations, ammonium azide (AA) is found to be the thermodynamic ground state of N4H4 compounds in preference to trans-tetrazene (TTZ), hydro-nitrogen solid-1 (HNS-1) and HNS-2 phases. We have carried out a detailed study on structure and lattice dynamics of the equilibrium phase (AA). AA undergoes a phase transition to TTZ at around ∼39-43 GPa followed by TTZ to HNS-1 at around 80-90 GPa under the studied temperature range 0-650 K. The accelerated and decelerated compression of a and c lattice constants suggest that the ambient phase of AA transforms to a tetragonal phase and then to a low symmetry structure with less anisotropy upon further compression. We have noticed that the angle made by type-II azides with the c-axis shows a rapid decrease and reaches a minimum value at 12 GPa, and thereafter increases up to 50 GPa. Softening of the shear elastic moduli is suggestive of a mechanical instability of AA under high pressure. In addition, we have also performed density functional perturbation theory calculations to obtain the vibrational spectrum of AA at ambient as well as at high pressures. Furthermore, we have made a complete assignment of all the vibrational modes which is in good agreement with the experimental observations at ambient pressure. Moreover, the calculated pressure dependent IR spectra show that the N-H stretching frequencies undergo red and blue-shifts corresponding to strengthening and weakening of hydrogen bonding, respectively, below and above 4 GPa. The intensity of the N-H asymmetric stretching mode B2u is found to diminish gradually and the weak coupling between NH4 and N3 ions makes B1u and B3u modes to degenerate with progression of pressure up to 4 GPa which causes weakening of hydrogen bonding and these effects may lead to a structural phase transition in AA around 4 GPa. Furthermore, we have also calculated the phonon dispersion curves at 0 and 6 GPa and no soft phonon mode is observed under high pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp04294aDOI Listing

Publication Analysis

Top Keywords

phase stability
8
lattice dynamics
8
ammonium azide
8
density functional
8
theory calculations
8
phase transition
8
gpa
8
high pressure
8
weakening hydrogen
8
hydrogen bonding
8

Similar Publications

Background: /aims. Pseudoxanthoma Elasticum (PXE, OMIM 264800) is an autosomal, recessive, metabolic disorder characterized by progressive ectopic calcification in the skin, the vasculature and Bruch's membrane. Variants in the ABCC6 gene are associated with low plasma pyrophosphate (PPi) concentration.

View Article and Find Full Text PDF

Context: Radiofrequency ablation (RFA) is used as treatment for symptomatic thyroid nodules. Factors influencing the volume reduction ratio (VRR) at 12 months are not yet fully understood.

Objective: The primary objective was evaluating the VRR at 12 months after RFA.

View Article and Find Full Text PDF

White lies for coral reefs: Dynamics of two-patch coral reefs model with asymmetric dispersal.

J Theor Biol

January 2025

Center for Mathematical Biosciences, School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, PR China. Electronic address:

Coral reef ecosystem is a crucial component of marine ecosystems and is undergoing severe degradation due to the combined dural impact of environmental changes and human activities. Soundscape technology is an innovative coral reef restoration approach that attracts fish to degraded reefs. Inspired by such technique, a five-dimensional mathematical dynamical model incorporating the asymmetric dispersal of parrotfish is formulated to characterize the dynamic interaction among macroalgae, coral, algal turf, and parrotfish in coral reef ecosystem.

View Article and Find Full Text PDF

Assessing the Impacts of Drug Loading and Polymer Type on Dissolution Behavior and Diffusive Flux of GDC-6893 Amorphous Solid Dispersions.

J Pharm Sci

January 2025

Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).

View Article and Find Full Text PDF

Quantitative chromatin protein dynamics during replication origin firing in human cells.

Mol Cell Proteomics

January 2025

Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.

Accurate genome duplication requires a tightly regulated DNA replication program, which relies on the fine regulation of origin firing. While the molecular steps involved in origin firing have been determined predominantly in budding yeast, the complexity of this process in human cells has yet to be fully elucidated. Here, we describe a straightforward proteomics approach to systematically analyse protein recruitment to the chromatin during induced origin firing in human cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!