Reduced expression of exocytotic proteins caused by anti-cholinesterase pesticides in Brachionus calyciflorus (Rotifera: Monogononta).

Braz J Biol

Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, MX.

Published: August 2015

The organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.

Download full-text PDF

Source
http://dx.doi.org/10.1590/1519-6984.01614DOI Listing

Publication Analysis

Top Keywords

expression exocytotic
8
brachionus calyciflorus
8
pesticides methyl-parathion
8
methyl-parathion carbaryl
8
membrane proteins
8
adverse effects
8
syntaxin-1 syntaxin-4
8
syntaxin-4 snap-23
8
proteins
6
pesticides
6

Similar Publications

Gut hormones control intestinal function, metabolism and appetite, and have been harnessed therapeutically to treat type 2 diabetes and obesity. Our understanding of the enteroendocrine axis arises largely from animal studies, but intestinal organoid models make it possible to identify, genetically modify and purify human enteroendocrine cells (EECs). This study aimed to map human EECs using single-cell RNA sequencing.

View Article and Find Full Text PDF

Rod inputs arrive at horizontal cell somas in mouse retina solely via rod-cone coupling.

bioRxiv

October 2024

Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA.

Rod and cone photoreceptor cells selectively contact different compartments of axon-bearing retinal horizontal cells in the retina. Cones synapse exclusively on the soma whereas rods synapse exclusively on a large axon terminal compartment. The possibility that rod signals can travel down the axon from terminal to soma has been proposed to allow spectrally opponent interactions between rods and cones, but there is conflicting data about whether this actually occurs.

View Article and Find Full Text PDF

Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors.

View Article and Find Full Text PDF

The thienopyridine A-769662 and benzimidazole 991 inhibit human TASK-3 potassium channels in an AMPK-independent manner.

Biochem Pharmacol

December 2024

Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK. Electronic address:

Article Synopsis
  • TASK-1/3 channels in carotid body type 1 cells are key for sensing low oxygen levels, affecting potassium currents and ultimately influencing breathing patterns.
  • Recent studies questioned whether AMP-activated protein kinase (AMPK) directly inhibits TASK-3 channels in response to hypoxia, although a recognizable phosphorylation motif was found in human TASK-3.
  • Experiments with various AMPK activators indicated that two compounds, A-769662 and 991, inhibit hTASK-3 currents, while establishing that AMPK does not regulate TASK-3 currents as initially proposed.
View Article and Find Full Text PDF

Palmitoylation of synaptic proteins: roles in functional regulation and pathogenesis of neurodegenerative diseases.

Cell Mol Biol Lett

August 2024

Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Palmitoylation is a type of lipid modification that plays an important role in various aspects of neuronal function. Over the past few decades, several studies have shown that the palmitoylation of synaptic proteins is involved in neurotransmission and synaptic functions. Palmitoyl acyltransferases (PATs), which belong to the DHHC family, are major players in the regulation of palmitoylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!