Models of the elastic x-ray scattering feature for warm dense aluminum.

Phys Rev E Stat Nonlin Soft Matter Phys

Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA.

Published: September 2015

The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)]10.1038/nphoton.2015.41 with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1-100 eV and densities of 2.7-8.1g/cm^{3}. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]PRLTAO0031-900710.1103/PhysRevLett.110.065001. We also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.92.033101DOI Listing

Publication Analysis

Top Keywords

warm dense
16
dense aluminum
12
elastic feature
12
x-ray scattering
8
feature warm
8
fletcher et al
8
models elastic
4
elastic x-ray
4
feature
4
scattering feature
4

Similar Publications

The properties of the hydrogen fluid at high pressures are still of interest to the scientific community. The experimentally unreachable dynamical properties could provide new insights into this field. In 2020 [Cheng et al.

View Article and Find Full Text PDF

Mixed Resolution-of-the-Identity Compressed Exchange for Hybrid Mixed Deterministic-Stochastic Density Functional Theory from Low to Extreme Temperatures.

J Chem Theory Comput

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter.

View Article and Find Full Text PDF

We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior.

View Article and Find Full Text PDF
Article Synopsis
  • The obligate intracellular parasite replicates within a compartment called the parasitophorous vacuole (PV) and utilizes a protein ingestion pathway to take in nutrients from the host cell's cytosol, initiated by the protein GRA14.
  • A genome-wide CRISPR screen revealed that mutants lacking components of this ingestion pathway (GRA14, CPL, or CRT) are forced to rely more on alternative metabolic pathways to survive, such as pyrimidine and fatty acid biosynthesis.
  • Analysis showed that these ingestion-deficient mutants had lower levels of key nutrients and growth defects when amino acids were scarce, indicating that the ingestion pathway plays a crucial role in nutrient acquisition during resource-limited conditions.
View Article and Find Full Text PDF

A pulsed power facility has been designed for studying the warm dense matter regime. It is based on the pulsed Joule heating technique, originally proposed by Korobenko and Rakhel [Int. J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!