The structure of aqueous alcohol solutions at the molecular level for many decades has remained an intriguing topic in numerous theoretical and practical investigations. The aberrant thermodynamic properties of water-alcohol mixtures are believed to be caused by the differences in energy of hydrogen bonding between water-water, alcohol-alcohol, and alcohol-water molecules. We present the Raman scattering spectra of water, ethanol, and water-ethanol solutions with 20 and 70 vol % of ethanol thoroughly measured and analyzed at temperatures varying from -10 to +70 °C. Application of the MCR-ALS method allowed for each spectrum to extract contributions of molecules with different strengths of hydrogen bonding. The energy (enthalpy) of formation/weakening of hydrogen bonds was calculated using the slope of Van't Hoff plot. The energy of hydrogen bonding in 20 vol % of ethanol was found the highest among all the samples. This finding further supports appearance of clathrate-like structures in water-ethanol solutions with concentrations around 20 vol % of ethanol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5b06678 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Tsinghua University, Institute of Nuclear and New Energy Technology, Room A320, Nengke Building, Qinghua Yuan No.1, Beijing, CHINA.
Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
The computational spectroscopy of water has proven to be a powerful tool for probing the structure and dynamics of chemical systems and for providing atomistic insight into experimental vibrational spectroscopic results. However, such calculations have been limited for biochemical systems due to the lack of empirical vibrational frequency maps for the TIP3P water model, which is used in many popular biomolecular force fields. Here, we develop an empirical map for the TIP3P model and evaluate its efficacy for reproducing the experimental vibrational spectroscopy of water.
View Article and Find Full Text PDFChiral amines and amino alcohols form an important category of molecules employed in the designing of new drugs and catalyst. Herein, we present a helically-twisted stereodynamic dialdehyde probe 1 for the determining of absolute configuration, and enantiomeric excess of chiral amine and amino alcohols. Probe 1 is based on the pyridine-2,6-dicarboxamide (PDC) core and undergoes rapid interconversion between the P- and M- conformers.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11OQX, UK.
The dynamics and functionality of proteins are significantly influenced by their interaction with water. For lyophilised ( ≤ 0.05 where = g of HO per g of protein) and weakly hydrated systems ( ≤ 0.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, United Kingdom.
This paper describes the synthesis, characterization, and supramolecular assembly of polyurethane elastomers. Bis-aromatic urea hydrogen-bonding motifs have been used to promote the self-assembly of the materials. The materials described comprise a soft block, namely, polytetramethylene ether glycol (PTMG), as a telechelic diol and hard crystalline domains that feature a bis-aromatic urea hydrogen bonding motif as a chain extender.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!