p21(WAF1/CIP1) Expression is Differentially Regulated by Metformin and Rapamycin.

Int J Chronic Dis

Renal Unit and Diabetes Clinical Research Unit, Derriford Hospital, Plymouth, PL6 8DH, UK.

Published: October 2015

The mammalian target of rapamycin (mTOR) pathway plays an important role in the development of diabetic nephropathy and other age-related diseases. One of the features of DN is the elevated expression of p21(WAF1/CIP1). However, the importance of the mTOR signalling pathway in p21 regulation is poorly understood. Here we investigated the effect of metformin and rapamycin on mTOR-related phenotypes in cell lines of epithelial origin. This study reports that metformin inhibits high glucose-induced p21 expression. High glucose opposed metformin in regulating cell size, proliferation, and protein synthesis. These effects were associated with reduced AMPK activation, affecting downstream mTOR signalling. However, the inhibition of the mTOR pathway by rapamycin did not have a negative effect on p21 expression, suggesting that metformin regulates p21 upstream of mTOR. These findings provide support for the hypothesis that AMPK activation may regulate p21 expression, which may have implications for diabetic nephropathy and other age-related pathologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590942PMC
http://dx.doi.org/10.1155/2014/327640DOI Listing

Publication Analysis

Top Keywords

p21 expression
12
metformin rapamycin
8
mtor pathway
8
diabetic nephropathy
8
nephropathy age-related
8
mtor signalling
8
ampk activation
8
metformin
5
mtor
5
p21
5

Similar Publications

Backgrounds/aims: Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed in and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.

Methods: TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry.

View Article and Find Full Text PDF

Effect of ΔNp63β on cell cycle and apoptosis in T98G cells.

Turk J Med Sci

December 2024

Department of Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkiye.

Background/aim: The p53 protein, a crucial tumor suppressor, governs cell cycle regulation and apoptosis. Similarly, p63, a member of the p53 family, exhibits traits of both tumor suppression and oncogenic behavior through its isoforms. However, the functional impact of ΔNp63β, an isoform of the p63 protein, on human glioma cancer cells like T98G cells remains poorly understood, representing the novelty of this study in the current literature.

View Article and Find Full Text PDF

Structural characterization and anti-aging activity investigation of a polysaccharide from Anemarrhena asphodeloides Bge.

Int J Biol Macromol

December 2024

Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Anemarrhena asphodeloides Bge. (AAB), a traditional medicinal herb, has a long history of delaying the aging process. Yet, the anti-aging effects of its polysaccharides have not been thoroughly investigated.

View Article and Find Full Text PDF

To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!