Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination.

J Natl Cancer Inst

Tumor Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK (CH, PP, GC, IRH, JLO, NK, TC, VSM); Tumor Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK (FC, ES).Current affiliations: Tumor Microenvironment Team, Institute of Cancer Research, Chester Beatty Laboratories, London, UK (FC); Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia and IMIB-Arrixaca, Murcia, Spain (CH).

Published: January 2016

Background: Abnormal cell migration and invasion underlie metastasis, and actomyosin contractility is a key regulator of tumor invasion. The links between cancer migratory behavior and DNA damage are poorly understood.

Methods: Using 3D collagen systems to recapitulate melanoma extracellular matrix, we analyzed the relationship between the actomyosin cytoskeleton of migrating cells and DNA damage. We used multiple melanoma cell lines and microarray analysis to study changes in gene expression and in vivo intravital imaging (n = 7 mice per condition) to understand how DNA damage impacts invasive behavior. We used Protein Tissue Microarrays (n = 164 melanomas) and patient databases (n = 354 melanoma samples) to investigate the associations between markers of DNA damage and actomyosin cytoskeletal features. Data were analyzed with Student's and multiple t tests, Mann-Whitney's test, one-way analysis of variance, and Pearson correlation. All statistical tests were two-sided.

Results: Melanoma cells with low levels of Rho-ROCK-driven actomyosin are subjected to oxidative stress-dependent DNA damage and ATM-mediated p53 protein stabilization. This results in a specific transcriptional signature enriched in DNA damage/oxidative stress responsive genes, including Tumor Protein p53 Inducible Protein 3 (TP53I3 or PIG3). PIG3, which functions in DNA damage repair, uses an unexpected catalytic mechanism to suppress Rho-ROCK activity and impair tumor invasion in vivo. This regulation was suppressed by antioxidants. Furthermore, PIG3 levels decreased while ROCK1/2 levels increased in human metastatic melanomas (ROCK1 vs PIG3; r = -0.2261, P < .0001; ROCK2 vs PIG3: r = -0.1381, P = .0093).

Conclusions: The results suggest using Rho-kinase inhibitors to reactivate the p53-PIG3 axis as a novel therapeutic strategy; we suggest that the use of antioxidants in melanoma should be very carefully evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712681PMC
http://dx.doi.org/10.1093/jnci/djv289DOI Listing

Publication Analysis

Top Keywords

dna damage
28
dna
8
tumor invasion
8
damage
7
melanoma
5
pig3
5
reactivation p53
4
p53 cytoskeletal
4
cytoskeletal sensor
4
sensor control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!