Listeria monocytogenes is a foodborne pathogen of considerable genetic diversity with varying pathogenicity. Initially, we found that the strain M7 was far less pathogenic than the strain Lm850658 though both are serovar 4a strains belonging to the lineage III. Comparative genomic approaches were then attempted to decipher the genetic basis that might govern the strain-dependent pathotypes. There are 2,761 coding sequences of 100% nucleotide identity between the two strains, accounting for 95.7% of the total genes in Lm850658 and 92.7% in M7. Lm850658 contains 33 specific genes, including a novel 20K prophage whereas strain M7 has 130 specific genes, including two large prophages (38K and 44K). To examine the roles of these specific prophages in pathogenicity, the 20K and 38K prophages were deleted from their respective strains. There were virtually no differences of pathogenicity between the deletion mutants and their parent strains, although some putative virulent factors like VirB4 are present in the 20K region or holin-lysin in the 38K region. In silico PCR analysis of 29 listeria genomes show that only strain SLCC2540 has the same 18 bp integration hotspot as Lm850658, whereas the sequence identity of their 20K prophages is very low (21.3%). The 38K and 44K prophages are located in two other different hotspots and are conserved in low virulent strains M7, HCC23, and L99. In conclusion, the 20K and 38K prophages of L. monocytogenes serovar 4a strains Lm850658 and M7 are not related to virulence but contribute to genetic diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1504.04075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!