A histone acetyltransferase Tat-interacting protein 60 kDa (Tip60) regulates the DNA damage response by acetylating histone and remodeling chromatin. In addition to histone acetyltransferase activity, Tip60 is known to regulate a variety of cellular functions, including gene expression, DNA damage response, cell migration and apoptosis. Lower expression of Tip60 is observed in lymphomas, melanomas, breast, colon, and lung cancer. It is widely accepted that Tip60 functions as a tumor suppressor. However, a role of Tip60 in gliomas still remains unclear. In this study, we investigated the role of Tip60 in the malignant behavior of human gliomas. By quantitative RT-PCR analysis using fresh human brain tumor tissues from 55 patients, we found that lower Tip60 expression and higher membrane-type 1 matrix metalloproteinase (MT1-MMP) expression are associated with advanced tumor grade in glioma tissues. Knockdown of Tip60 in glioblastoma cells promoted cell adhesion, spreading and MT1-MMP transcription and thereby invasion, which was suppressed by inhibition of MT1-MMP and nuclear factor-kappa B (NF-κB) activity. We demonstrate for the first time that tumor suppressor Tip60 down-regulates cell adhesion and MT1-MMP expression and thereby invasion of glioblastoma cells by suppressing NF-κB pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10585-015-9756-8DOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
12
tip60
10
tip60 regulates
8
mt1-mmp transcription
8
transcription invasion
8
invasion glioblastoma
8
nf-κb pathway
8
histone acetyltransferase
8
dna damage
8
damage response
8

Similar Publications

Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!