Enantiomeric profiling of chiral pharmacologically active compounds (PACs) in the environment has hardly been investigated. This manuscript describes, for the first time, a multi-residue enantioselective method for the analysis of human and veterinary chiral PACs and their main metabolites from different therapeutic groups in complex environmental samples such as wastewater and river water. Several analytes targeted in this paper have not been analysed in the environment at enantiomeric level before. These are aminorex, carboxyibuprofen, carprofen, cephalexin, 3-N-dechloroethylifosfamide, 10,11-dihydro-10-hydroxycarbamazepine, dihydroketoprofen, fenoprofen, fexofenadine, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, indoprofen, mandelic acid, 2-phenylpropionic acid, praziquantel and tetramisole. The method is based on chiral liquid chromatography utilising a chiral α1-acid glycoprotein column and tandem mass spectrometry detection. Excellent chromatographic separation of enantiomers (Rs≥1.0) was achieved for chloramphenicol, fexofenadine, ifosfamide, naproxen, tetramisole, ibuprofen and their metabolites: aminorex and dihydroketoprofen (three of four enantiomers), and partial separation (Rs = 0.7-1.0) was achieved for ketoprofen, praziquantel and the following metabolites: 3-N-dechloroethylifosfamide and 10,11-dihydro-10-hydroxycarbamazepine. The overall performance of the method was satisfactory for most of the compounds targeted. Method detection limits were at low nanogram per litre for surface water and effluent wastewater. Method intra-day precision was on average under 20% and sample pre-concentration using solid phase extraction yielded recoveries >70% for most of the analytes. This novel, selective and sensitive method has been applied for the quantification of chiral PACs in surface water and effluent wastewater providing excellent enantioresolution of multicomponent mixtures in complex environmental samples. It will help with better understanding of the role of individual enantiomers in the environment and will enable more accurate environmental risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-015-9075-6 | DOI Listing |
Sci Rep
December 2024
KAUST Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Informatics, University of Hamburg, Hamburg, Germany.
Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.
View Article and Find Full Text PDFLand use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.
View Article and Find Full Text PDFSci Rep
December 2024
School of Environmental Science, The University of Shiga Prefecture, Hassakacho, Hikone, 2500, 522-8533, Japan.
Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.
View Article and Find Full Text PDFSci Rep
December 2024
Consumer and Design Sciences, College of Human Science Auburn University, Auburn, Alabama, USA.
Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!