Background & Aims: Glucose-6-phosphatase (G6Pase α, G6PC) deficiency, also known as von Gierke's disease or GSDIa, is the most common glycogen storage disorder. It is characterized by a decreased ability of the liver to convert glucose-6-phosphate (G6P) to glucose leading to glycogen and lipid over-accumulation progressing to liver failure and/or hepatomas and carcinomas. Autophagy of intracellular lipid stores (lipophagy) has been shown to stimulate fatty acid β-oxidation in hepatic cells. Thus, we examined autophagy and its effects on reducing hepatic lipid over-accumulation in several cell culture and animal models of GSDIa.
Methods: Autophagy in G6PC-deficient hepatic cell lines, mice, and dogs was measured by Western blotting for key autophagy markers. Pro-autophagic Unc51-like kinase 1 (ULK1/ATG1) was overexpressed in G6PC-deficient hepatic cells, and lipid clearance and oxidative phosphorylation measured. G6PC(-/-) mice and GSDIa dogs were treated with rapamycin and assessed for liver function.
Results: Autophagy was impaired in the cell culture, mouse, and canine models of GSDIa. Stimulation of the anti-autophagic mTOR, and inhibition of the pro-autophagic AMPK pathways occurred both in vitro and in vivo. Induction of autophagy by ULK1/ATG1 overexpression decreased lipid accumulation and increased oxidative phosphorylation in G6PC-deficient hepatic cells. Rapamycin treatment induced autophagy and decreased hepatic triglyceride and glycogen content in G6PC(-/-) mice, as well as reduced liver size and improved circulating markers of liver damage in GSDIa dogs.
Conclusions: Autophagy is impaired in GSDIa. Pharmacological induction of autophagy corrects hepatic lipid over-accumulation and may represent a new therapeutic strategy for GSDIa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhep.2015.10.008 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
Background: Diosmetin (DIOS) is a naturally abundant flavonoid and possesses various biological activities that hold promise as an anti-cancer agent. However, the anti-cancer activities and underlying mechanism of DIOS on cutaneous melanoma remain unclear.
Objective: This study seeks to explore the anti-tumor effect and mechanism of DIOS in cutaneous melanoma.
Int J Cosmet Sci
January 2025
School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
Background: Oily skin not only threatens people with aesthetic and hygienic discomfort but also confronts them with annoying skin problems. To explore new skin care ingredients from herbal or plant extracts and understand their underlying mechanism for sebum control would assist in the discovery of desirable sebosuppressive agents, though it is still a deserving and challenging task.
Aim: To explore the effect of Camellia saponin (CS) on modulating the lipogenesis of human sebocytes.
Hua Xi Kou Qiang Yi Xue Za Zhi
February 2025
Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.
Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.
Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.
Circ Res
January 2025
British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).
Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.
Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.
Front Immunol
January 2025
Department of Otolaryngology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China.
Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!