Extracellular spike trains recorded from central nervous system neurons reflect the random activations from a multitude of presynaptic cells making contacts mainly on the extensive dendritic trees. The dendritic potential variations are propagated towards the trigger zone where action potentials are generated. In this paper, two dendritic propagation modes are modeled: passive and quasi-active. Synaptic bombardments are modeled as being applied apically, somatically, or distributed over the dendritic tree. The resulting simulated neuronal spike trains are analyzed by point process techniques. Dendritic inputs resulted in a tendency for random bursting, interspike interval histograms with a long tail and coefficients of variation larger than one. The autocorrelation histograms reflected dynamics of the dendritic tree and they were able to discriminate between a passive or a quasi-active propagation mode and between dendritic and somatic synaptic inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/10.16448DOI Listing

Publication Analysis

Top Keywords

dendritic
8
synaptic inputs
8
spike trains
8
passive quasi-active
8
dendritic tree
8
dendritic transformations
4
transformations random
4
random synaptic
4
inputs measured
4
measured neuron's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!