Typical Application of Sound Field in Wastewater Treatment with Fluidized Bed Photocatalytic Reactor.

Water Environ Res

Key Laboratory of Inorganic Chemistry in Universities of Shandong, Jining University, Qufu, 273155, China.

Published: April 2015

The effect of a sound field on wastewater treatment with a fluidized bed photocatalytic reactor (FBPR) was investigated. With Alizarin Green (AG) being the sole infectant, the Fe-doped TiO2 catalyst prepared was used as the fluidized media. According to the Langmuir-Hinshelwood model, the photocatalytic degradation follows the pseudo-first-order reaction kinetics with respect to the concentration of AG. Sound field application allowed the fluidization of the fine powder at high liquid flow rates; thus, the mass transfer rate between organic pollutant and particle photocatalyst was enhanced and the efficiency of degradation was increased. As expected, the degradation rate constant increased with increasing sound pressure level, as well as increased with increasing sound frequency ranging from 50 to 100 Hz, then further decreased with increasing sound frequency from 100 to 200 Hz. In addition, Fe doping is also responsible for the enhanced photocurrent response of the Fe-doped TiO2 nanoparticle in FBPR relative to pure TiO2.

Download full-text PDF

Source
http://dx.doi.org/10.2175/106143015X14212658613910DOI Listing

Publication Analysis

Top Keywords

sound field
12
increasing sound
12
field wastewater
8
wastewater treatment
8
treatment fluidized
8
fluidized bed
8
bed photocatalytic
8
photocatalytic reactor
8
fe-doped tio2
8
increased increasing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!