Three new homodinuclear manganese(II) complexes of the type [Mn2L(1-3)(ClO4)(H2O)](ClO4)3 (1-3) have been synthesized via cyclocondensation of terephthalaldehyde with three different benzoylated pendants in the presence of manganese(II) perchlorate and characterized by spectroscopic methods. Cyclic voltammetric investigation of complexes (1-3) depict two quasi-reversible one electron reduction processes in the cathodic potential region (E(1)pc=-0.73 to-0.83 V, E(2)pc=-1.31 to -1.40 V) and two quasi-reversible one electron oxidation processes in the anodic potential region (E(1)pa=1.03 to 1.10 V, E(2)pa=1.69 to 1.77 V). Electronic absorption spectra of the complexes suggested tetrahedral geometry around the central metal ion. The observed low magnetic moment values (μeff, 5.60-5.68 B.M.) of the complexes indicate the presence of an antiferromagnetic spin-exchange interaction between two metal centers, which was also supported by the broad EPR signal. All the compounds were tested for antibacterial activity against Gram (-ve) and Gram (+ve) bacterial strains. The binding studies of complexes with CT-DNA suggested minor-groove mode of interaction. Molecular docking studies were carried out in order to find the binding affinity of complexes with DNA and protein EGFR Kinase. The complexes are stabilized by additional electrostatic and van der Waals interaction with the DNA, and support minor groove mode of binding. The cleavage activity of complexes on pBR322 plasmid DNA displays efficient activity through a mechanistic pathway involving hydroxyl radicals. The cytotoxicity of complexes 2 and 3 have been tested against human liver adenocarcinoma (HepG2) cell line. Nuclear-chromatin cleavage has also been observed with propidium iodide (PI) staining and alkaline single-cell gel electrophoresis (comet assay) techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2015.09.026DOI Listing

Publication Analysis

Top Keywords

complexes
10
manganeseii complexes
8
molecular docking
8
docking studies
8
quasi-reversible electron
8
potential region
8
dinuclear manganeseii
4
complexes hexaazamacrocycles
4
hexaazamacrocycles bearing
4
bearing n-benzoylated
4

Similar Publications

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Background: Resilience refers to the ability to adapt or recover from stress. There is increasing appreciation that it plays an important role in wholistic patient-centered care and may affect patient outcomes, including those of orthopaedic surgery. Despite being a focus of the current orthopaedic evidence, there is no strong understanding yet of whether resilience is a stable patient quality or a dynamic one that may be modified perioperatively to improve patient-reported outcome scores.

View Article and Find Full Text PDF

We appreciate Reierson's thoughtful commentary on our 2019 paper, which described our experiences, ethical process, judgment calls, and lessons from a 2016-2017 data-sharing pilot between Crisis Text Line and academic researchers. The commentary raises important questions about the ethical conduct of health research in the digital age, particularly regarding informed consent, potential conflicts of interest, and the protection of vulnerable populations. Our article focused specifically on the noncommercial use of Crisis Text Line data for research purposes, so we restrict our reply to points relevant to such usage.

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!