The proteasome is the major multi-catalytic machinery responsible for protein degradation and maintenance of the proteome. The 26S proteasome is an ATP-dependent proteolytic complex, dedicated to the degradation of poly-ubiquitinated proteins. It consists of a 20S proteolytic core and one or two flanking 19S regulatory complexes. The three catalytic subunits harboring chymotrypsin-like (CT-L), trypsin-like (T-L), and caspase-like (C-L; also termed PGPH) activities respectively reside in the 20S proteasome that can also exist in a free form and degrade oxidized and unfolded proteins. Impaired proteasome function has been implicated in the pathogenesis of a number of diseases including Alzheimer's disease, diabetes, cancer and aging. The emerging interest in proteasome function as diagnostic marker of various human pathologies and therapeutic target necessitates the development of accurate, sensitive and reliable methodologies for the assessment of proteasome activity. Herein, we describe an optimization procedure for the measurement of CT-L, T-L and C-L activities in cell lysates of fibroblasts (HFL-1), melanocytes (B16F10) and peripheral blood mononuclear cells (PBMCs) using fluorogenic peptide substrates in a mid-throughput 96-well plate format. Optimization involves the composition of cell lysis and assay buffers, and the determination of the concentrations of specific fluorogenic substrates and protein content in the reaction to attain appropriate linear catalytic response during measurement. Additional parameters assessed include the concentration of the cell lysate and of ATP in the cell lysis and assay buffers. Our methodological analysis provides useful guidelines for the accurate and rapid determination of proteasome activity in various cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.762DOI Listing

Publication Analysis

Top Keywords

proteasome activity
12
proteasome
8
fluorogenic substrates
8
proteasome function
8
cell lysis
8
lysis assay
8
assay buffers
8
cell
5
optimization vitro
4
vitro measurement
4

Similar Publications

Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.

View Article and Find Full Text PDF

Optimized mammalian expression system for the ubiquitin E3 ligase E6AP/UBE3A.

Protein Expr Purif

January 2025

Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:

E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

Background: Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed.

View Article and Find Full Text PDF

Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!