A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis. | LitMetric

An Epigenetic Pathway Regulates Sensitivity of Breast Cancer Cells to HER2 Inhibition via FOXO/c-Myc Axis.

Cancer Cell

Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, University of Pennsylvania, 412 Curie Boulevard, Philadelphia, PA 19104, USA. Electronic address:

Published: October 2015

Human epidermal growth factor receptor 2 (HER2) is upregulated in a subset of human breast cancers. However, the cancer cells often quickly develop an adaptive response to HER2 kinase inhibitors. We found that an epigenetic pathway involving MLL2 is crucial for growth of HER2(+) cells and MLL2 reduces sensitivity of the cancer cells to a HER2 inhibitor, lapatinib. Lapatinib-induced FOXO transcription factors, normally tumor-suppressing, paradoxically upregulate c-Myc epigenetically in concert with a cascade of MLL2-associating epigenetic regulators to dampen sensitivity of the cancer cells to lapatinib. An epigenetic inhibitor suppressing c-Myc synergizes with lapatinib to suppress cancer growth in vivo, partly by repressing the FOXO/c-Myc axis, unraveling an epigenetically regulated FOXO/c-Myc axis as a potential target to improve therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748715PMC
http://dx.doi.org/10.1016/j.ccell.2015.09.005DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
foxo/c-myc axis
12
epigenetic pathway
8
cells her2
8
sensitivity cancer
8
cancer
5
cells
5
epigenetic
4
pathway regulates
4
regulates sensitivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!