A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A weight averaged approach for predicting amide vibrational bands of a sphingomyelin bilayer. | LitMetric

A weight averaged approach for predicting amide vibrational bands of a sphingomyelin bilayer.

Phys Chem Chem Phys

RIKEN Theoretical Molecular Science Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. and RIKEN iTHES, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Published: November 2015

Infrared (IR) and Raman spectra of a sphingomyelin (SM) bilayer have been calculated for the amide I, II and A modes and the double-bonded CC stretching mode by a weight averaged approach, based on an all-atom molecular dynamics (MD) simulation and a vibrational structure calculation. Representative structures and statistical weights of SM clusters connected by hydrogen bonds (HBs) are observed in MD trajectories. After constructing smaller fragments from the SM clusters, the vibrational spectra of the target modes were calculated by normal mode analysis with a correction for anharmonicity, using density functional theory. The final IR and Raman spectra of a SM bilayer were obtained as the weight averages over all SM clusters. The calculated Raman spectrum is in excellent agreement with a recent measurement, providing a clear assignment of the peak in question observed at 1643 cm(-1) to the amide I modes of a SM bilayer. The analysis of the IR spectrum has also revealed that the amide bands are sensitive to the water content inside the membrane, since their band positions are strongly modulated by the HB between SM and water molecules. The present study suggests that the amide I band serves as a marker to identify the formation of SM clusters, and opens a new way to detect lipid rafts in the biological membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp04131gDOI Listing

Publication Analysis

Top Keywords

weight averaged
8
averaged approach
8
sphingomyelin bilayer
8
raman spectra
8
amide modes
8
amide
5
approach predicting
4
predicting amide
4
amide vibrational
4
vibrational bands
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!