In the rat, induction of maternal behavior depends on the parity of the female. For example, nulliparous (NP) females need longer exposure to pups than multiparous (MP) or lactating (L) females to exhibit similar maternal behavior. In this study, we investigated the role of brain oxytocin in the approaching behavior of these female rats. Olfactory preferences for pup odors were examined for 8 consecutive days. Each preference test was followed by direct overnight exposure to pups. On the 8th day, MP and L, but not NP females showed robust pup-odor preferences. After the behavioral test, half of the females were exposed to pups for 2 h, whereas the other half were not. The females were then sacrificed to analyze brain oxytocin (OXT) and vasopressin (AVP) activities by cFos immunohistochemistry and to quantify their receptor mRNA expression using real-time PCR. In the paraventricular nucleus (PVN), the percentage of cFos-positive OXT neurons was significantly larger in MP and L females than in NP females after pup exposure. No significant differences were found in cFos expression in OXT neurons of the supraoptic nucleus (SON) or in AVP neurons of either the PVN or SON. Expression of OXT receptor mRNA in the medial preoptic area and amygdala of the control groups was also higher in MP females than in NP females. Finally, we demonstrated that infusion of OXT into the lateral ventricle of NP females promoted preferences for pup odors. These results indicate that puerperal and parental experiences enhance the responsiveness of OXT neurons in the PVN to pup stimuli and establish olfactory preferences for these odors in a parity-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768775 | PMC |
http://dx.doi.org/10.1262/jrd.2015-046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!