A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular genetic response to varied wavelengths of light in Xiphophorus maculatus skin. | LitMetric

Molecular genetic response to varied wavelengths of light in Xiphophorus maculatus skin.

Comp Biochem Physiol C Toxicol Pharmacol

Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA. Electronic address:

Published: December 2015

Xiphophorus fishes represent a model often utilized to study UVB induced tumorigenesis. Recently, varied genetic responses to UVB exposure have been documented in the skin of female and male Xiphophorus, as have differences in UVB response in the skin of different parental species and for interspecies hybrids produced from crossing them. Additionally, it has been shown that exposure to "cool white" fluorescent light induces a shift in the genetic profiles of Xiphophorus skin that is nearly as robust as the UVB response, but involves a fundamentally different set of genes. Given these results and the use of Xiphophorus interspecies hybrids as an experimental model for UVB inducible melanoma, it is of interest to characterize genes that may be transcriptionally modulated in a wavelength specific manner. The global molecular genetic response of skin upon exposure of the intact animal to specific wavelengths of light has not been investigated. Herein, we report results of RNA-Seq experiments from the skin of male Xiphophorus maculatus Jp 163 B following exposure to varied 50nm wavelengths of light ranging from 300-600nm. We identify two specific wavelength regions, 350-400nm (88 genes) and 500-550nm (276 genes), that exhibit transcriptional modulation of a significantly greater number of transcripts than any of the other 50nm regions in the 300-600nm range. Observed functional sets of genes modulated within these two transcriptionally active light regions suggest different mechanisms of gene modulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662885PMC
http://dx.doi.org/10.1016/j.cbpc.2015.10.002DOI Listing

Publication Analysis

Top Keywords

wavelengths light
12
molecular genetic
8
genetic response
8
xiphophorus maculatus
8
male xiphophorus
8
uvb response
8
response skin
8
interspecies hybrids
8
xiphophorus
6
skin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!