Modelling marine protected areas: insights and hurdles.

Philos Trans R Soc Lond B Biol Sci

CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, Tasmania 7001, Australia Centre for Marine Socioecology, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia.

Published: November 2015

Models provide useful insights into conservation and resource management issues and solutions. Their use to date has highlighted conditions under which no-take marine protected areas (MPAs) may help us to achieve the goals of ecosystem-based management by reducing pressures, and where they might fail to achieve desired goals. For example, static reserve designs are unlikely to achieve desired objectives when applied to mobile species or when compromised by climate-related ecosystem restructuring and range shifts. Modelling tools allow planners to explore a range of options, such as basing MPAs on the presence of dynamic oceanic features, and to evaluate the potential future impacts of alternative interventions compared with 'no-action' counterfactuals, under a range of environmental and development scenarios. The modelling environment allows the analyst to test if indicators and management strategies are robust to uncertainties in how the ecosystem (and the broader human-ecosystem combination) operates, including the direct and indirect ecological effects of protection. Moreover, modelling results can be presented at multiple spatial and temporal scales, and relative to ecological, economic and social objectives. This helps to reveal potential 'surprises', such as regime shifts, trophic cascades and bottlenecks in human responses. Using illustrative examples, this paper briefly covers the history of the use of simulation models for evaluating MPA options, and discusses their utility and limitations for informing protected area management in the marine realm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614735PMC
http://dx.doi.org/10.1098/rstb.2014.0278DOI Listing

Publication Analysis

Top Keywords

marine protected
8
protected areas
8
achieve desired
8
modelling
4
modelling marine
4
areas insights
4
insights hurdles
4
hurdles models
4
models provide
4
provide insights
4

Similar Publications

Segmentation by recreation experiences of demand in coastal and marine destinations: A study in Galapagos, Ecuador.

PLoS One

January 2025

Facultad de Ciencias Sociales y Humanísticas, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador.

Tourism in coastal and marine areas offers a wide variety of recreational activities. The present study had the following objectives: (i), identify the dimensions of recreational experiences in coastal and marine destinations focused on island marine protected areas (ii) determine the demand segments for recreational experiences, and (iii) establish the relationship between the demand segments for recreational experiences and the satisfaction and loyalty. The study was conducted in the Galápagos Islands of Ecuador, and 407 valid questionnaires were collected on-site.

View Article and Find Full Text PDF

The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.

View Article and Find Full Text PDF

Pacific Proving Grounds-Derived U and U: Potential Tracers for Western North Pacific Ocean Dynamics.

Environ Sci Technol

January 2025

Department of Environmental and Resource Engineering, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark.

U and U are proven to be useful tracers to investigate upper-ocean hydrodynamics due to their source-specific isotopic ratios and conservative behaviors in the open ocean. However, their application in the Pacific Ocean has been limited by scarce observations and unclear source-term information. Here, we present our observations of U and U in the western North Pacific Subtropical Gyre (NPStG), showing the presence of a source of anthropogenic U featured by a low U/U ratio (∼1 × 10), which is an order of magnitude lower than the global fallout signature (∼2 × 10).

View Article and Find Full Text PDF

Tibial Skeletal Adaptations in Male and Female Marine Corps Officer Candidates Undergoing 10 Weeks of Military Training.

Calcif Tissue Int

January 2025

Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, 3860 S. Water St, Pittsburgh, PA, 15203, USA.

Military training improves tibial density, structure, and estimated strength; however, men and women may adapt differently. Most work performed in military populations has assessed changes in bone health during initial entry programs, a timeframe at the beginning of a service member's career when bones may be more adaptable to a novel mechanical stimulus. The purpose of this investigation was to examine changes in tibial volumetric bone mineral density (vBMD), structure, and estimated strength, and biomarkers of bone metabolism (P1NP, osteocalcin, TRAP5b, sclerostin) between male and female candidates measured at the start and end of United States Marine Corps Officer Candidates School (OCS), a 10-week military training program attended by older service members (~ 25 y/o) who may have previous military experience.

View Article and Find Full Text PDF

The wind-blown sand protection system in the Shapotou section of the Baotou-Lanzhou Railway is a representative artificial ecosystem in a desert region. Over the past 70 years, this system has transformed mobile dunes into fixed dunes through vegetation succession, relying solely on natural rainfall without additional irrigation. However, ecosystem sustainability has been endangered by the emergence of numerous blowouts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!