AI Article Synopsis

Article Abstract

Dimenhydrinate (DMH)-loaded buccal bioadhesive films for the prevention and treatment of motion sickness were prepared and optimized. This study examines the rate of drug release from the films for prolonged periods of time to reduce or limit the frequency of DMH administration. Based on preliminary studies using various polymers and concentrations, hydroxyethylcellulose (2.5, 3.0, and 3.2%), and xanthan gum (2.8%) were chosen as matrix polymers. The films were analyzed with respect to their mechanical, physicochemical, bioadhesive, swelling, and in-vitro release properties. In in-vivo pharmacokinetic studies, xanthan gum-based DMH buccal film was associated with significantly increased DMH plasma levels between 1 h and 5 h after DMH dosing when compared with an oral drug solution. The area under the curve AUC0-7 h value of the mucoadhesive buccal film was two-fold higher than the oral DMH solution. Histological analysis revealed that DMH films cause mild morphological and inflammatory changes in rabbit buccal mucosa. The DMH buccal film is effective for approximately 7 h, thus representing an option for single-dose antiemetic therapy. This dosage regimen could be particularly beneficial for chain travelers who travel for long periods of time.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2015.1091470DOI Listing

Publication Analysis

Top Keywords

buccal film
12
periods time
8
dmh buccal
8
dmh
7
buccal
6
films
5
preparation in-vivo
4
in-vivo evaluation
4
evaluation dimenhydrinate
4
dimenhydrinate buccal
4

Similar Publications

Background/objectives: Films in the mouth offer a promising alternative drug delivery system for oral administration, with several advantages over traditional oral formulations. Furthermore, their non-invasive nature and easy administration make them conducive to increasing patient compliance. The use of active agents in these films can further improve their drug delivery properties, making them an even more useful drug delivery system.

View Article and Find Full Text PDF

Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder.

Biomaterials

December 2024

Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:

The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.

View Article and Find Full Text PDF

Mucoadhesive Enhancement of Gelatine by Tannic Acid Crosslinking for Buccal Application.

Biopolymers

January 2025

Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia.

This study aims to evaluate the impact of formulation parameters on tannic acid-crosslinked gelatine (GelTA) films, intended as a mucoadhesive matrix for extended buccal drug delivery. GelTA films were prepared using the solvent evaporation technique and screened based on their mucoadhesive and dissolution characteristics. The formulation variables included the source of gelatine (bovine and fish), tannic acid concentration, pH of the film-forming solutions, and the type and concentration of plasticisers.

View Article and Find Full Text PDF

Buccal delivery offers a promising alternative to e.g., oral or parenteral drug administrations by leveraging the mucosal membranes of the mouth to enhance drug absorption and enhance patient compliance.

View Article and Find Full Text PDF

Development and evaluation of ocular antibiotic-loaded soluble film inserts.

Cont Lens Anterior Eye

December 2024

Optometry and Vision Science Research Groups (OVSRG), School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK. Electronic address:

Antibiotic eyedrops typically require frequent instillation due to the eye's defensive mechanisms limiting drugs from reaching target sites. This may risk patient non-adherence and treatment inefficacy. The aim of this study was to develop a biocompatible and fully soluble ocular film insert to enhance the delivery of levofloxacin, as well as the handling procedure for its administration; based on the anatomical dimensions and physiological conditions of the human eye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!