MicroRNA 140 Promotes Expression of Long Noncoding RNA NEAT1 in Adipogenesis.

Mol Cell Biol

Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA

Published: January 2016

More than 40% of the U.S. population are clinically obese and suffer from metabolic syndrome with an increased risk of postmenopausal estrogen receptor-positive breast cancer. Adipocytes are the primary component of adipose tissue and are formed through adipogenesis from precursor mesenchymal stem cells. While the major molecular pathways of adipogenesis are understood, little is known about the noncoding RNA signaling networks involved in adipogenesis. Using adipocyte-derived stem cells (ADSCs) isolated from wild-type and microRNA 140 (miR-140) knockout mice, we identify a novel miR-140/long noncoding RNA (lncRNA) NEAT1 signaling network necessary for adipogenesis. miR-140 knockout ADSCs have dramatically decreased adipogenic capabilities associated with downregulation of NEAT1 expression. We identified a miR-140 binding site in NEAT1 and found that mature miR-140 in the nucleus can physically interact with NEAT1, leading to increased NEAT1 expression. We demonstrated that reexpression of NEAT1 in miR-140 knockout ADSCs is sufficient to restore their ability to undergo differentiation. Our results reveal an exciting new noncoding RNA signaling network that regulates adipogenesis and that is a potential new target in the prevention or treatment of obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702608PMC
http://dx.doi.org/10.1128/MCB.00702-15DOI Listing

Publication Analysis

Top Keywords

noncoding rna
16
mir-140 knockout
12
microrna 140
8
stem cells
8
rna signaling
8
signaling network
8
knockout adscs
8
neat1 expression
8
neat1
7
adipogenesis
6

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

As multiple imaging modalities cannot reliably diagnose cardiac tumors, the molecular approach offers alternative ways to detect rare ones. One such molecular approach is CRISPR-based diagnostics (CRISPR-Dx). CRISPR-Dx enables visual readout, portable diagnostics, and rapid and multiplex detection of nucleic acids such as microRNA (miRNA).

View Article and Find Full Text PDF

DisGeNet: a disease-centric interaction database among diseases and various associated genes.

Database (Oxford)

January 2025

School of Computer Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, China.

The pathogenesis of complex diseases is intricately linked to various genes and network medicine has enhanced understanding of diseases. However, most network-based approaches ignore interactions mediated by noncoding RNAs (ncRNAs) and most databases only focus on the association between genes and diseases. Based on the mentioned questions, we have developed DisGeNet, a database focuses not only on the disease-associated genes but also on the interactions among genes.

View Article and Find Full Text PDF

Correction: Qin et al. Production and Stabilization of Specific Upregulated Long Noncoding RNA HOXD-AS2 in Glioblastomas Are Mediated by TFE3 and miR-661, Respectively. 2022, , 2828.

Int J Mol Sci

December 2024

State Key Laboratory of Medical Molecular Biology, Medical Primate Research Center, Neuroscience Center, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.

The authors wish to make the following correction to this paper [...

View Article and Find Full Text PDF

Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!