Regulation of Neuronal Cell Cycle and Apoptosis by MicroRNA 34a.

Mol Cell Biol

Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India

Published: January 2016

The cell cycle of neurons remains suppressed to maintain the state of differentiation and aberrant cell cycle reentry results in loss of neurons, which is a feature in neurodegenerative disorders like Alzheimer's disease (AD). Present studies revealed that the expression of microRNA 34a (miR-34a) needs to be optimal in neurons, as an aberrant increase or decrease in its expression causes apoptosis. miR-34a keeps the neuronal cell cycle under check by preventing the expression of cyclin D1 and promotes cell cycle arrest. Neurotoxic amyloid β1-42 peptide (Aβ42) treatment of cortical neurons suppressed miR-34a, resulting in unscheduled cell cycle reentry, which resulted in apoptosis. The repression of miR-34a was a result of degradation of TAp73, which was mediated by aberrant activation of the MEK extracellular signal-regulated kinase (ERK) pathway by Aβ42. A significant decrease in miR-34a and TAp73 was observed in the cortex of a transgenic (Tg) mouse model of AD, which correlated well with cell cycle reentry observed in the neurons of these animals. Importantly, the overexpression of TAp73α and miR-34a reversed cell cycle-related neuronal apoptosis (CRNA). These studies provide novel insights into how modulation of neuronal cell cycle machinery may lead to neurodegeneration and may contribute to the understanding of disorders like AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702589PMC
http://dx.doi.org/10.1128/MCB.00589-15DOI Listing

Publication Analysis

Top Keywords

cell cycle
32
neuronal cell
12
cycle reentry
12
cell
9
cycle
8
microrna 34a
8
mir-34a
6
neurons
5
regulation neuronal
4
apoptosis
4

Similar Publications

NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications.

Cell Biol Toxicol

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.

NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!