Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice's routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2  ±  0.2 mm using GE's 'Plus' mode reconstruction setting and 5.0  ±  0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24  ±  0.37, 6.20  ±  0.34, and 7.84  ±  0.70 lp cm(-1), respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5-13.3 HU (noise) and 4.8-13.3 mGy (CTDIvol) for the smallest phantom; 9.1-18.4 HU and 9.3-28.8 mGy for the medium phantom; and 7.8-23.4 HU and 16.0-48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632971PMC
http://dx.doi.org/10.1088/0031-9155/60/21/8381DOI Listing

Publication Analysis

Top Keywords

image quality
20
image noise
16
routine abdomen
12
image
9
abdomen protocols
8
standardize image
8
range patient
8
patient sizes
8
noise ctdivol
8
phantom sizes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!