Outcomes related to disordered metabolism are common in alcohol dependence (AD). To investigate alterations in the regulation of body mass that occur in the context of AD, we performed a genome-wide association study (GWAS) of body mass index (BMI) in African Americans (AAs) and European Americans (EAs) with AD. Subjects were recruited for genetic studies of AD or drug dependence and evaluated using the Semi-structured Assessment for Drug Dependence and Alcoholism. We investigated a total of 2587 AAs and 2959 EAs with DSM-IV AD diagnosis. In the stage 1 sample (N = 4137), we observed three genome-wide significant (GWS) single-nucleotide polymorphism associations, rs200889048 (P = 8.98 * 10 ) and rs12490016 (P = 1.44 * 10 ) in EAs and rs1630623 (P = 5.14 * 10 ) in AAs and EAs meta-analyzed. In the stage 2 sample (N = 1409), we replicated 278, 253 and 168 of the stage 1 suggestive loci (P < 5*10 ) in AAs, EAs, and AAs and EAs meta-analyzed, respectively. A meta-analysis of stage 1 and stage 2 samples (N = 5546) identified two additional GWS signals: rs28562191 in EAs (P = 4.46 * 10 ) and rs56950471 in AAs (P = 1.57 * 10 ). Three of the GWS loci identified (rs200889048, rs12490016 and rs1630623) were not previously reported by GWAS of BMI in the general population, and two of them raise interesting hypotheses: rs12490016-a regulatory variant located within LINC00880, where there are other GWAS-identified variants associated with birth size, adiposity in newborns and bulimia symptoms, which also interact with social stress in relation to birth size; rs1630623-a regulatory variant related to ALDH1A1, a gene involved in alcohol metabolism and adipocyte plasticity. These loci offer molecular insights regarding the regulatory mechanisms of body mass in the context of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5102811 | PMC |
http://dx.doi.org/10.1111/adb.12317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!