Background: Vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of cysts. Both these factors seem to be interrelated to each other. The importance of the MMPs in the induction of the angiogenic process has recently been described. MMPs, which are produced by microvascular endothelial cells, break down the extracellular matrix. This is one of the earliest and sustained events in the process of new capillary formation. Thus, we studied the expression of VEGF and MMP-9 in Keratocystic odontogenic tumors (KCOTs), dentigerous cysts (DCs) and radicular cysts (RCs).
Materials And Methods: Ten cases each of KCOTs, DCs and RCs and were included in the study and immunohistochemistry was performed using anti-VEGF and anti-MMP-9 antibody using standard protocol.
Result: When the data of positive cells in the epithelium of KCOTs was compared with DCs and RCs, it showed highly significant results (P<0.05). Furthermore, the expression of VEGF and MMP-9 in the stroma of KCOTs showed a significant result when compared to DCs and RCs. The expression of VEGF in inflammatory cells was more in RCs when compared to DCs. Also, the expression of MMP-9 was more in RCs and DCs as compared to KCOTs.
Conclusion: Higher expression of VEGF and MMP-9 in KCOTs could be responsible for the aggressive behavior of this cyst that is currently considered a cystic tumor rather than a developmental cyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0973-1482.144591 | DOI Listing |
Nat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFNat Commun
December 2024
Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.
View Article and Find Full Text PDFCureus
November 2024
General Medicine, Barts Health National Health Service (NHS) Trust, London, GBR.
Anti-vascular endothelial growth factor (VEGF) drugs are used for various diseases with abnormal proliferation of blood vessels. The use of these drugs in wet age-related macular degeneration (AMD) has proven to be highly effective. Various factors contribute to the efficacy of these drugs in different settings.
View Article and Find Full Text PDFMol Ther
December 2024
Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh; Edinburgh EH16 4TJ, UK; CARIM school for cardiovascular sciences, Department of Pathology, Maastricht University Medical Center (MUMC); Maastricht 6229HX, The Netherlands. Electronic address:
Proliferation of vascular smooth muscle cells (vSMCs) is a crucial contributor to pathological vascular remodelling. MicroRNAs (miRNAs) are powerful gene regulators and attractive therapeutic agents. Here, we aim to systematically identify and characterise miRNAs with therapeutic potential in targeting vSMC proliferation.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
Background: Tuina is an effective treatment for the decrease of skeletal muscle atrophy after peripheral nerve injury. However, the underlying mechanism of action remains unclear. This study aimed to explore the underlying mechanisms of tuina in rats with sciatic nerve injury (SNI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!