Transferrin receptor 2 (Tfr2) is an iron-modulator transcribed in two isoforms, Tfr2α and Tfr2β. The latter is expressed in the heart. We obtained two mouse models with silencing of Tfr2β: one with a normal systemic iron amount (SIA), i.e., Tfr2-KI, and the other, i.e., LCKO-KI, with high SIA due to hepatic Tfr2α silencing. We aimed to assess whether Tfr2β might play a role in myocardial injury and whether Tfr2β silencing might modify proteins of iron metabolism, antioxidant, apoptotic, and survival enzyme activities in the heart undergoing ischemia/reperfusion (I/R). Isolated hearts of wild-type (WT) and Tfr2-null mice were studied before or after an I/R protocol, and proteins/RNA analyzed by Western blot and/or quantitative PCR. Tfr2β increased in WT hearts subject to I/R, and both Tfr2β null mice hearts were protected against I/R injury (about 40% smaller infarct-size compared to WT hearts). RISK kinases (ERK1/2-AKT-PKCε) were found up-regulated after I/R in Tfr2-KI, whereas SAFE enzyme (Stat3) and GSK3β resulted phosphorylated during I/R in LCKO-KI hearts. While HO-1 and HIF-2a were high in both Tfr2β-null mice, Catalase, and proapoptotic factors were upregulated only in LCKO-KI. Finally, Tfr2-KI hearts presented an increased Ferritin-H and a decreased Ferroportin1, whereas LCKO-KI hearts displayed an upregulation of Ferritin-L chain and DMT1/Hamp-RNA. In conclusion, Tfr2β isoform is involved in cardiac iron metabolism and its silencing leads to a protected phenotype (antioxidants, RISK, and/or SAFE upregulation) against I/R challenging. Iron-dependent signals involved in cardioprotection seem to be positively affected by Tfr2β downregulation and subsequent Ferritins upregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biof.1237 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!