Absorption-Enhancing Effect of Nitric Oxide on the Absorption of Hydrophobic Drugs in Rat Duodenum.

J Pharm Sci

Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan. Electronic address:

Published: February 2016

Nitric oxide (NO), an endogenous gas that plays a versatile role in the physiological system, has the ability to increase the intestinal absorption of water-soluble compounds through the paracellular route. However, it remains unclear whether NO can enhance the absorption of hydrophobic drugs through the transcellular route. In this study, we examined the absorption-enhancing effect of NO on intestinal permeability of hydrophobic drugs in rat intestine. The pretreatment of rat gastrointestinal sacs with NOC7, a NO-releasing reagent, significantly increased the permeation of griseofulvin from mucosa to serosa in the sacs prepared from the duodenum, but not in those prepared from the other regions such as jejunum, ileum, and colon. The absorption-enhancing effect of NOC7 on the duodenal permeation varied depending on the hydrophobicity of the drugs used. Furthermore, NOC7 treatment was found to be apparently ineffective on the griseofulvin permeation in the duodenum pretreated with dithiothreitol (DTT) that was used as a mucus remover, even though the permeation was increased by pretreatment with DTT alone. These results suggest that NO increases the absorption of hydrophobic drugs through the transcellular route in the duodenum by modulating the mucus layer function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24677DOI Listing

Publication Analysis

Top Keywords

hydrophobic drugs
16
absorption hydrophobic
12
nitric oxide
8
drugs rat
8
drugs transcellular
8
transcellular route
8
drugs
5
absorption-enhancing nitric
4
absorption
4
oxide absorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!