Mathematical models were developed and evaluated for growth of psychrotolerant pseudomonads in chilled milk and in cottage cheese with cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic acid and sorbic acid. A simplified cardinal parameter growth rate model was developed based on growth in broth. Subsequently, the reference growth rate parameter μref25°C-broth of 1.031/h was calibrated by fitting the model to a total of 35 growth rates from cottage cheese with cultured cream dressing. This resulted in a μref25°C-cottage cheese value of 0.621/h. Predictions from both growth rate models were evaluated by comparison with literature and experimental data. Growth of psychrotolerant pseudomonads in heat-treated milk (n=33) resulted in a bias factor (Bf) of 1.08 and an accuracy factor (Af) of 1.32 (μref25°C-broth), whereas growth in cottage cheese with cultured cream dressing and in non-heated milk (n=26) resulted in Bf of 1.08 and Af of 1.43 (μref25°C-cottage cheese). Lag phase models were developed by using relative lag times and data from both the present study and from literature. The acceptable simulation zone method showed the developed models to successfully predict growth of psychrotolerant pseudomonads in milk and cottage cheese at both constant and dynamic temperature storage conditions. The developed models can be used to predict growth of psychrotolerant pseudomonads and shelf life of chilled cottage cheese and milk at constant and dynamic storage temperatures. The applied methodology and the developed models seem likely to be applicable for shelf life assessment of other types of products where psychrotolerant pseudomonads are important for spoilage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2015.09.020DOI Listing

Publication Analysis

Top Keywords

psychrotolerant pseudomonads
24
cottage cheese
24
growth psychrotolerant
20
milk cottage
12
cheese cultured
12
cultured cream
12
cream dressing
12
growth rate
12
developed models
12
growth
11

Similar Publications

Molecular insights into the ecology of a psychrotolerant Pseudomonas syringae.

Environ Microbiol

July 2021

Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK.

Low temperatures constrain cellular life due to reductions in nutrient uptake, enzyme kinetics, membrane permeability, and function of other biomacromolecules. This has implications for the biophysical limits of life on Earth, and the plausibility of life in extraterrestrial locations. Although most pseudomonads are mesophilic in nature, isolates such as the Antarctic Pseudomonas syringae Lz4W exhibit considerable psychrotolerance, with an ability to grow even between 4 and 0°C.

View Article and Find Full Text PDF

We obtained the complete genome sequence of the psychrotolerant extremophile sp. MPC6, a natural Polyhydroxyalkanoates (PHAs) producing bacterium able to rapidly grow at low temperatures. Genomic and phenotypic analyses allowed us to situate this isolate inside the phylogroup of pseudomonads as well as to reveal its metabolic versatility and plasticity.

View Article and Find Full Text PDF

Two novel prophages ФAH14a and ФAH14b of a psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H14 have been characterized. They were simultaneously induced with mitomycin C and packed into capsids of the same size and protein composition.

View Article and Find Full Text PDF

Mathematical models were developed and evaluated for growth of psychrotolerant pseudomonads in chilled milk and in cottage cheese with cultured cream dressing. The mathematical models include the effect of temperature, pH, NaCl, lactic acid and sorbic acid. A simplified cardinal parameter growth rate model was developed based on growth in broth.

View Article and Find Full Text PDF

The major cold-shock protein (CspA) encoding gene cspA were detected in three Himalayan psychrotrophic Pseudomonad strains, by PCR amplification. Partial sequencing of three Pseudomonas strains cspA gene and BLAST search confirmed the high similarity with putative bacterial cspA gene and bacterial CspA protein. Bioinformatics analysis of these partial CspA amino acid sequences showed presence of putative conserved region for DNA/RNA-binding motifs RNP-1 and RNP-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!