PP2Acα positively regulates the termination of liver regeneration in mice through the AKT/GSK3β/Cyclin D1 pathway.

J Hepatol

State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China. Electronic address:

Published: February 2016

Background & Aims: Liver injury triggers a highly organized and ordered liver regeneration (LR) process. Once regeneration is complete, a stop signal ensures that the regenerated liver is an appropriate functional size. The inhibitors and stop signals that regulate LR are unknown, and only limited information is available about these mechanisms.

Methods: A 70% partial hepatectomy (PH) was performed in hepatocyte-specific PP2Acα-deleted (PP2Acα(-/-)) and control (PP2Acα(+/+)) mice. LR was estimated by liver weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were analyzed.

Results: We found that the catalytic subunit of PP2A was markedly upregulated during the late stage of LR. PP2Acα(-/-) mice showed prolonged LR termination, an increased liver size compared to the original mass and lower levels of serum ALT and AST compared with control mice. In these mice, cyclin D1 protein levels, but not mRNA levels, were increased. Mechanistically, AKT activated by the loss of PP2Acα inhibited glycogen synthase kinase 3β (GSK3β) activity, which led to the accumulation of cyclin D1 protein and accelerated hepatocyte proliferation at the termination stage. Treatment with the PI3K inhibitor wortmannin at the termination stage was sufficient to inhibit cyclin D1 accumulation and hepatocyte proliferation.

Conclusions: PP2Acα plays an essential role in the proper termination of LR via the AKT/GSK3β/Cyclin D1 pathway. Our findings enrich the understanding of the molecular mechanism that controls the termination of LR and provides a potential therapeutic target for treating liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2015.09.025DOI Listing

Publication Analysis

Top Keywords

liver regeneration
8
akt/gsk3β/cyclin pathway
8
liver injury
8
cyclin protein
8
termination stage
8
liver
7
termination
6
mice
5
pp2acα positively
4
positively regulates
4

Similar Publications

Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.

View Article and Find Full Text PDF

Bottom-up reconstitution design of a biomimetic atelocollagen microfibril for enhancing hemostatic, antibacterial, and biodegradable benefits.

J Mater Chem B

January 2025

Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, P. R. China.

Powdered collagen is emerging as a promising topical hemostat owing to its adaptability to various wounds, active hemostatic abilities, and biosafety. The reproduction of a bionic structure similar to natural collagen is crucial for effective hemostasis and bioactivity. Additional factors relevant to clinical application include antimicrobial properties, minimal immune response, and straightforward preparation.

View Article and Find Full Text PDF

Aims: Liver fibrosis predisposes patients to liver failure and hepatocellular carcinoma. Various markers, which can be calculated easily from serum parameters, have been reported to predict liver fibrosis accurately. This study investigated the prognostic factors, including blood-based markers for liver fibrosis of patients with hepatocellular carcinoma following initial curative hepatectomy.

View Article and Find Full Text PDF

Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury.

Front Immunol

January 2025

Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.

Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially . This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration.

View Article and Find Full Text PDF

Host hepatocyte senescence determines the success of hepatocyte transplantation in a mouse model of liver injury.

J Hepatol

January 2025

Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, United Kingdom. Electronic address:

Background & Aims: Hepatocyte transplantation has shown promise for genetic diseases of the hepatocytes but to date has shown limited efficacy for non-genetic forms of severe liver injury. Limited cell engraftment and poor function of donor hepatocytes in recipient livers impacts the clinical utility of hepatocyte cell therapy. The mechanisms underpinning this are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!