Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.09.074DOI Listing

Publication Analysis

Top Keywords

pungent substances
12
5-ht3a receptors
12
recombinantly expressed
8
serotonin receptor
8
receptor type
8
substances
8
5-ht3 receptor
8
nervous system
8
modulators 5-ht3a
8
receptor
6

Similar Publications

This study aims to investigate the effect and potential mechanism of Polygonati Rhizoma aqueous extract in protecting mice from gastric mucosal injury(stomach Yin deficiency). ICR mice were administrated with the mixture of pungent substance extract and alcohol by gavage once a day for 6 weeks to establish the mouse model of gastric mucosal injury with gastric Yin deficiency. The modeled mice were randomized into three groups of model and Polygonati Rhizoma aqueous extract administrated at 0.

View Article and Find Full Text PDF

Potential Protective Effects of Pungent Flavor Components in Neurodegenerative Diseases.

Molecules

December 2024

Beijing Life Science Academy (BLSA), Beijing 102209, China.

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) have become a major global health burden, but the detailed pathogeneses of neurodegenerative diseases are still unknown, and current treatments are mainly aimed at controlling symptoms; there are no curative treatments for neurodegenerative diseases or treatments for the progressive cognitive, behavioral, and functional impairments that they cause. Studies have shown that some plant extracts with pungent flavor components have a certain neuroprotective effect in neurodegenerative diseases, and their mechanisms mainly involve inhibiting neuronal apoptosis, promoting neuronal regeneration, reducing mitochondrial degeneration, and reducing the production of oxides such as reactive oxygen species in cells, which are of great significance for exploring the treatment of neurodegenerative diseases. In this review, we searched the PubMed database for relevant literature collected in the past 15 years.

View Article and Find Full Text PDF

Capsaicin: pharmacological applications and prospects for drug designing.

J Pharm Pharmacol

December 2024

Drugs Testing Laboratory Avam Anusandhan Kendra, Raipur, 492002, C.G., India.

Objectives: A primary objective of this review is to summarize the evidence-based pharmacological applications of capsaicin, particularly its use to manage pain and treat various health conditions. A second goal of the review is to research how recent technological advances are improving the bioavailability and therapeutic index of capsaicin, as well as the development of novel capsaicin-mimetics that are able to enhance therapeutic responses in various human diseases.

Methods: In the review, numerous human clinical trials and preclinical studies are examined to determine how effective, safe, and optimal dosages of capsaicin can be used in pain management and therapeutic applications.

View Article and Find Full Text PDF

Cough variant asthma (CVA) is a common disease with high incidence among children. Cough is the main clinical symptom and Chinese medicine (CM) has an exact effect on CVA. However, the rules of herb formulation, the pharmacodynamic substances, and the mechanism remained unclear.

View Article and Find Full Text PDF

The Influence of Different Factors on the Metabolism of Capsaicinoids in Pepper ( L.).

Plants (Basel)

October 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Pepper is a globally cultivated vegetable known for its distinct pungent flavor, which is derived from the presence of capsaicinoids, a class of unique secondary metabolites that accumulate specifically in pepper fruits. Since the accumulation of capsaicinoids is influenced by various factors, it is imperative to comprehend the metabolic regulatory mechanisms governing capsaicinoids production. This review offers a thorough examination of the factors that govern the metabolism of capsaicinoids in pepper fruit, with a specific focus on three primary facets: (1) the impact of genotype and developmental stage on capsaicinoids metabolism, (2) the influence of environmental factors on capsaicinoids metabolism, and (3) exogenous substances like methyl jasmonate, chlorophenoxyacetic acid, gibberellic acid, and salicylic acid regulate capsaicinoid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!