Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Complement-C1q/tumor necrosis factor-α related protein 1 (CTRP1) is a 35-kDa glycoprotein that is secreted from various tissues. Although CTRP1 is highly increased in patients with type II diabetes and obesity, the metabolic roles of CTRP1 remain largely unknown. To unveil the physiological roles of CTRP1 in vivo, CTRP1 transgenic (TG) mice were challenged by a high-fat diet (HFD) and a high-sucrose drink (HS). Homeostatic model assessment-estimated insulin resistance values were decreased in HFD- or HS-fed CTRP1 TG mice compared with wild-type control mice. In this context, CTRP1 stimulated glucose uptake through the glucose transporter GLUT4 translocation to the plasma membrane and also increased glucose consumption by stimulating glycolysis. To analyze the roles of CTRP1 in lipid metabolism, acetyl-CoA carboxylase (ACC) and hormone-sensitive lipase levels were determined in CTRP1 TG mice, and the effect of CTRP1 on fatty acid oxidation was assessed in C2C12 myotubes. CTRP1 was found to inhibit ACC by phosphorylation and to stimulate fatty acid oxidation in C2C12 myotubes. Taken together, CTRP1 performs active catabolic roles in vivo. Therefore, CTRP1 seems to perform a defensive function against nutritional challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2015.08.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!