AMP-activated protein kinase (AMPK) is a central energy gauge that regulates metabolism and has been increasingly involved in non-metabolic processes and diseases. However, AMPK's direct substrates in non-metabolic contexts are largely unknown. To better understand the AMPK network, we use a chemical genetics screen coupled to a peptide capture approach in whole cells, resulting in identification of direct AMPK phosphorylation sites. Interestingly, the high-confidence AMPK substrates contain many proteins involved in cell motility, adhesion, and invasion. AMPK phosphorylation of the RHOA guanine nucleotide exchange factor NET1A inhibits extracellular matrix degradation, an early step in cell invasion. The identification of direct AMPK phosphorylation sites also facilitates large-scale prediction of AMPK substrates. We provide an AMPK motif matrix and a pipeline to predict additional AMPK substrates from quantitative phosphoproteomics datasets. As AMPK is emerging as a critical node in aging and pathological processes, our study identifies potential targets for therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635044 | PMC |
http://dx.doi.org/10.1016/j.cmet.2015.09.009 | DOI Listing |
Cells
January 2025
Groupe de Recherche en Signalisation Cellulaire (GRSC), Département de Biologie Médicale, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC G8Z 4M3, Canada.
Elevated glucose levels at the fetal-maternal interface are associated with placental trophoblast dysfunction and increased incidence of pregnancy complications. Trophoblast cells predominantly utilize glucose as an energy source, metabolizing it through glycolysis in the cytoplasm and oxidative respiration in the mitochondria to produce ATP. The TGFβ1/SMAD2 signaling pathway and the transcription factors PPARγ, HIF1α, and AMPK are key regulators of cell metabolism and are known to play critical roles in extravillous trophoblast cell differentiation and function.
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; College of Forestry, Northwest A&F University, Yangling 712100, China; Western Scientific Observation and Experiment Station for Development and Utilization of Rural Renewable Energy, M.O.A, Northwest Agriculture & Forestry University, Yangling 712100, China. Electronic address:
The efficient extraction and purification of active components from Eucommia ulmoides Oliver (EUO) are crucial for their utilization. The structure and properties of the prepared EUO leaf polysaccharides (ELPs) and extractum (ELE) were comprehensively characterized in this study, and the intervention mechanism of the EUO polysaccharides and extractum in alcoholic liver disease (ALD) were investigated. The yield of EUO extractum was 24.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
Objective: Nuclear transcription factor-κB (NF-κB) activation is a pivotal event in the pathogenesis of osteoarthritis (OA). OA patients frequently exhibit vitamin D (VD) deficiency, which is commonly associated with NF-κB activation. Our study aimed to investigate whether VD could protect against OA by modulating NF-κB pathway and to explore the underlying mechanisms.
View Article and Find Full Text PDFInt Immunol
January 2025
Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!