Accumulating clinical and experimental evidence suggests that chronic neuroinflammation is associated with dopaminergic neuronal death in Parkinson's disease (PD). Ginsenoside Rg1, the most active components of ginseng, possesses a variety of biological effects on the central nervous system, cardiovascular system and immune system. The present study aimed to evaluate the protective effects of ginsenoside Rg1 on lipopolysaccharide (LPS)-induced microglia activation and dopaminergic neuronal degeneration in rat substantia nigra (SN) and its potential mechanisms. Treatment with Rg1 could ameliorate the apomorphine-induced rotational behavior in LPS-lesioned rats. GR antagonist RU486 partly abolished the protective effect of Rg1. Rg1 treatment significantly attenuated LPS-induced loss of tyrosin hydroxlase (TH) positive neurons in substantial nigra par compacta (SNpc) and decreased content of dopamine (DA) and its metabolites in striatum of the lesioned side. Meanwhile, Rg1 significantly inhibited LPS-induced microglial activation and production of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and nitric oxide (NO). These effects were abolished by co-treatment with RU486. In addition, Rg1 treatment significantly inhibited the LPS-induced phosphorylation of IκB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) in the lesioned side of substantial nigra. These effect could be also partly blocked by RU486. Taken together, these data indicate that Rg1 has protective effects on mesencephalic dopaminergic neurons from LPS-induced microglia inflammation. GR signaling pathway might be involved in the anti-inflammatory effect of Rg1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2015.09.040 | DOI Listing |
J Ginseng Res
January 2025
The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
Background: Vascular endothelial dysfunction (VED) is one of the main pathogenic events in pulmonary arterial hypertension (PAH). Previous studies have demonstrated that the ginsenoside Rg1 (Rg1) can ameliorate PAH, but the mechanism by which Rg1 affects pulmonary VED in hypoxia-induced PAH remains unclear.
Methods: Network pharmacology, molecular docking and other experiments were used to explore the mechanisms by which Rg1 affects PAH.
Pharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Biomed Chromatogr
February 2025
School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing, China.
Panax notoginseng (P. notoginseng) is one of the most famous natural medicines and widely used to promote blood circulation in health care. However, the active component group of P.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFActas Esp Psiquiatr
January 2025
Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.
Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!