Background: This study aims to study MUT gene mutation spectrum in Chinese patients with isolated methylmalonic academia (MMA) and their clinical features for the potential genotype-phenotype correlation.

Methods: Forty-three patients were diagnosed with isolated MMA by elevated blood propionylcarnitine, propionylcarnitine to acetylcarnitine ratio, and urine methylmalonate without hyperhomocysteinemia. The MUT gene was amplified by polymerase chain reaction and directly sequenced. Those patients with at least one variant allele were included. The novel missense mutations were assessed by bioinformatic analysis and screened against alleles sequenced from 50 control participants.

Results: Among the 43 patients, 38 had typical clinical presentations, and the majority (30/38) experienced earlyonset MMA. Eight patients died and seven were lost to follow-up. Twenty patients had poor outcomes and eight showed normal development. The 43 identified MUT gene mutations had at least one variant allele, whereas 35 had two mutant alleles. Of the 33 mutations reported before, eight recurrent mutations were identified in 32 patients, and c.729_730insTT (p.D244Lfs*39) was the most common (12/78) in the mutant alleles. Of the 10 novel mutations, six were missense mutations and four were premature termination codon mutations. The six novel missense mutations seemed to be pathogenic.

Conclusions: A total of 10 novel MUT mutations were detected in the Chinese population. c.729_730insTT (p.D244Lfs*39) was the most frequent mutation. A genotype-phenotype correlation could not be found, but the genotypic characterization indicated the need of genetic counseling for MMA patients and early prenatal diagnoses for high-risk families.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12519-015-0043-1DOI Listing

Publication Analysis

Top Keywords

mut gene
16
missense mutations
12
patients
9
mutations
9
clinical features
8
gene mutation
8
mutation spectrum
8
spectrum chinese
8
chinese patients
8
patients isolated
8

Similar Publications

MLH1 gene promoter methylation status partially overlaps with CpG methylator phenotype (CIMP) in colorectal adenocarcinoma.

Pathol Res Pract

December 2024

Department of Medicine - DIMED, University of Padova, Padova, Italy; Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy. Electronic address:

Background: RAS/BRAF mutations, mismatch DNA repair complex deficiency (MMRd)/microsatellite instability (MSI), and CpG methylator phenotype (CIMP) are key molecular actors in colorectal carcinogenesis. To date, conflicting evidence about the correlations between these molecular features has been reported.

Materials And Methods: A retrospectively selected cohort of 123 CRCs was divided into 3 groups based on the molecular characteristics: MMR proficient (MMRp)/BRAF p.

View Article and Find Full Text PDF

Introduction: BRAFV600E mutation (BRAF) is common in papillary thyroid cancer (PTC), and most patients have an excellent outcome. However, a TERT-promoter mutation (pTERT) in the presence of BRAF (BRAFpTERT) has been demonstrated to confer a more aggressive behavior to PTC. Lymphocytic infiltration is often present in PTC.

View Article and Find Full Text PDF

A novel role for protein disulfide isomerase ERp18 in venous thrombosis.

Thromb J

December 2024

Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, 215123, China.

Background: Previous studies using genetically modified mouse models and inhibitors have shown that protein disulfide isomerase (PDI) family plays a significant role in arterial thrombosis. However, their role in venous thrombosis remains unknown. In this study, using gene-modified mouse models, we determined whether PDI family members contribute to venous thrombosis.

View Article and Find Full Text PDF

MDM2 up-regulates the energy metabolism in NSCLC in a p53-independent manner.

Biochem Biophys Res Commun

January 2025

Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia. Electronic address:

Although an E3 ligase MDM2 is the major negative regulator of the p53 tumor suppressor, a growing body of evidence suggests its p53-independent oncogenic properties. In particular, MDM2 has been shown to regulate serine metabolism independently of p53 status in several types of neoplasia, including NSCLC. Using the GSEA approach and publicly available molecular data on NSCLC tumors, our bioinformatics data suggest that MDM2 affects a number of metabolic genes, particularly those encoding components of the electron transport chain (ETC).

View Article and Find Full Text PDF

METTL4-Mediated Mitochondrial DNA N6-Methyldeoxyadenosine Promoting Macrophage Inflammation and Atherosclerosis.

Circulation

December 2024

Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, China. (L.Z., X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.).

Background: Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!