Material and structural tensile properties of the human medial patello-femoral ligament.

J Mech Behav Biomed Mater

Istituto di Ricerca Traslazionale per l׳Apparato Locomotore-Nicola Cerulli - LPMRI, via A. Einstein 12, 52100 Arezzo, Italy; Department of Orthopedic Surgery, University of Perugia, via S. Andrea delle Fratte 1, 06134 Perugia, Italy.

Published: February 2016

The medial patellofemoral ligament (MPFL) is considered the most important passive patellar stabilizer and acts 50-60% of the force of the medial soft-tissue which restrains the lateralization of the patella between 0° and 30°. In this work, 24 human knees have been tested to evaluate the material properties of MPFL and to determine the structural behavior of femur-MPFL-Patella complex (FMPC). Particular attention was given to maintain the anatomical orientation between the patella and MPFL and to the evaluation of the elongation during the mechanical tests. The ultimate stress of the isolated ligament was 16±11MPa, the ultimate strain was 24.3±6.8%, the Young׳s Modulus was 116±95MPa and the strain energy density was 2.97±1.69MPa. The ultimate load of the whole structure, FMPC, was 145±68N, the ultimate elongation was 9.5±2.9mm, the linear stiffness was 42.5±10.2N/mm and the absorbed energy was 818.8±440.7Nmm. The evaluation of material and structural properties of MPFL is fundamental to understand its contribution as stabilizer and for the selection of repair and reconstruction methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2015.09.030DOI Listing

Publication Analysis

Top Keywords

material structural
8
properties mpfl
8
structural tensile
4
tensile properties
4
properties human
4
human medial
4
medial patello-femoral
4
patello-femoral ligament
4
ligament medial
4
medial patellofemoral
4

Similar Publications

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!