Despite the presence of a multitudinous pharmacotherapy, diabetes-induced depressive disorder remains undertreated. Evidence suggests that brain serotonergic deficits are associated with depressive-like behavior in diabetes and that 5HT3 receptor (5HT3R) antagonists have serotonergic facilitatory effects. This study examined the effects of a novel 5HT3R antagonist, 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide), in diabetes-induced depressive phenotypes. Experimentally, (1) to evaluate the effects of 4i, mice with 8-weeks of diabetes (induced by streptozotocin, 200mg/kg, i.p.) were treated with vehicle, 4i (0.5 and 1mg/kg/day, i.p.), fluoxetine (10mg/kg/day, i.p.) for 4-weeks and subjected to neurobehavioral assays, followed by biochemical estimation of serotonin levels in midbrain, prefrontal-cortex and cerebellum. (2) To evaluate the role of 5HT3R in the postulated effect of 4i, diabetic mice were given 4i (1mg/kg/day, i.p.) after 1h of 1-(m-chlorophenyl)-biguanide (mCPBG, a 5HT3R agonist, 10mg/kg/day, i.p.) treatment and subjected to the same protocol. The results showed that diabetic mice exhibited a significant behavioral deficit, including depression-like behavior in forced swim test, anxiety-like in open field test and sociability deficits in social interaction test, along with a significant decrease in serotonin level in these brain regions. 4i (1mg/kg), similar to fluoxetine, prevented these behavioral abnormalities and normalized brain serotonin levels. 4i (0.5mg/kg) ameliorated only diabetes-induced depressive-like behavior and serotonin deficits, but not anxiety-like effects. mCPBG blunted 4i-mediated behavioral response and increase in brain serotonin levels. Altogether, this study suggests that 4i prevents diabetes-induced depressive phenotypes in mice, which may involve antagonism of 5HT3Rs and increase in serotonin levels in discrete brain regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2015.10.007DOI Listing

Publication Analysis

Top Keywords

diabetes-induced depressive
16
serotonin levels
16
depressive phenotypes
12
antagonist n-3-chloro-2-methylphenylquinoxalin-2-carboxamide
8
prevents diabetes-induced
8
phenotypes mice
8
depressive-like behavior
8
diabetic mice
8
brain regions
8
brain serotonin
8

Similar Publications

Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment.

View Article and Find Full Text PDF

Background: Depression is a multifaceted disorder that represents one of the most common causes of disability. The risk for developing depression is increased in women and among individuals with chronic diseases. For example, individuals in the United States with diabetes mellitus (DM) are at a twofold increased risk of developing depression compared to the general population and approximately one-quarter of women with diabetes have comorbid depression.

View Article and Find Full Text PDF

In order to investigate the subcellular mechanisms underlying the beneficial effects of sarpogrelate-a 5-HT receptor antagonist-on diabetic cardiomyopathy, diabetes was induced in rats by injecting streptozotocin (65 mg/kg). Diabetic animals were treated with or without sarpogrelate (5 mg/kg daily) for 6 weeks; diabetic animals were also treated with insulin (10 units/kg daily) for comparison. Elevated plasma levels of glucose and lipids, depressed insulin levels, hemodynamic alterations and cardiac dysfunction in diabetic animals were partially or fully attenuated by sarpogrelate or insulin treatment.

View Article and Find Full Text PDF

Newly conducted research suggests that metabolic disorders, like diabetes and obesity, play a significant role as risk factors for psychiatric disorders. This connection presents a potential avenue for creating novel antidepressant medications by repurposing drugs originally developed to address antidiabetic conditions. Earlier investigations have shown that GLP-1 (Glucagon-like Peptide-1) analogs exhibit neuroprotective qualities in various models of neurological diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF

Depression and diabetes are closely linked; however, the pathogenesis of depression associated with diabetes is unclear, and there are no clinically effective antidepressant drugs for diabetic patients with depression. Bavachin is an important active ingredient in Fructus Psoraleae. In this study, we evaluated the anti-neuroinflammatory and antidepressant effects associated with diabetes and the molecular mechanisms of bavachin in a streptozotocin-induced diabetes mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!