Rebound spiking properties of mouse medial entorhinal cortex neurons in vivo.

Eur J Neurosci

Department of Psychological and Brain Sciences, Center for Systems Neuroscience, Center for Memory and Brain, Boston University, 2 Cummington Mall, Boston, MA, 02215, USA.

Published: December 2015

The medial entorhinal cortex is the gateway between the cortex and hippocampus, and plays a critical role in spatial coding as represented by grid cell activity. In the medial entorhinal cortex, inhibitory circuits are robust, and the presence of the h-current leads to rebound potentials and rebound spiking in in vitro experiments. It has been hypothesized that these properties, combined with network oscillations, may contribute to grid cell formation. To examine the properties of in vivo rebound spikes, we performed whole-cell patch-clamp recordings in medial entorhinal cortex neurons in anaesthetized mice. We injected hyperpolarizing inputs representing inhibitory synaptic inputs along with sinusoidal oscillations and found that hyperpolarizing inputs injected at specific phases of oscillation had a higher probability of inducing subsequent spikes at the peak of the oscillation in some neurons. This effect was prominent in the cells with large sag potential, which is a marker of the h-current. In addition, larger and longer hyperpolarizing current square-pulse stimulation resulted in a larger probability of eliciting rebound spikes, though we did not observe a relationship between the amplitude or duration of hyperpolarizing current pulse stimulation and the delay of rebound spikes. Overall these results suggest that rebound spikes are observed in vivo and may play a role in generating grid cell activity in medial entorhinal cortex neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780755PMC
http://dx.doi.org/10.1111/ejn.13097DOI Listing

Publication Analysis

Top Keywords

medial entorhinal
20
entorhinal cortex
20
rebound spikes
16
cortex neurons
12
grid cell
12
rebound spiking
8
cell activity
8
activity medial
8
hyperpolarizing inputs
8
hyperpolarizing current
8

Similar Publications

Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information.

View Article and Find Full Text PDF

Developmental exposure to legacy environmental contaminants, medial temporal lobe volumes and spatial navigation memory in late adolescents.

Environ Res

January 2025

Département de Psychologie, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada; Centre de Recherche du CHU Sainte-Justine, 3175, Chemin de La Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. Electronic address:

Exposure to lead, mercury, and polychlorinated biphenyls (PCBs) has been causally linked to spatial memory deficits and hippocampal changes in animal models. The Inuit community in Northern Canada is exposed to higher concentrations of these contaminants compared to the general population. This study aimed to 1) investigate associations between prenatal and current contaminant exposures and medial temporal brain volumes in Inuit late adolescents; 2) examine the relationship between these brain structures and spatial memory; and 3) assess the mediating role of brain structures in the association between contaminant exposure and spatial memory.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) can be diagnosed by in vivo abnormalities of amyloid-β plaques (A) and tau accumulation (T) biomarkers. Previous studies have shown that analyses of serial position performance in episodic memory tests, and especially, delayed primacy, are associated with AD pathology even in individuals who are cognitively unimpaired. The earliest signs of cortical tau pathology are observed in medial temporal lobe (MTL) regions, yet it is unknown if serial position markers are also associated with early tau load in these regions.

View Article and Find Full Text PDF

Mapping amyloid beta predictors of entorhinal tau in preclinical Alzheimer's disease.

Alzheimers Dement

January 2025

Computational Brain Research and Intervention (C-Brain) Lab, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA.

Introduction: Amyloid beta (Aβ) plaques and hyperphosphorylated tau in the entorhinal regions are key Alzheimer's disease (AD) markers, but the spatial Aβ pathways influencing tau pathology remain unclear.

Methods: We applied predictive modeling to identify Aβ standardized uptake value ratio (SUVR) spatial patterns that predict entorhinal tau levels, future hippocampal volume, and Preclinical Alzheimer's Cognitive Composite (PACC) scores at 5-year follow-up. The model was trained on Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 237), incorporating amyloid-PET (positron emission tomography), tau-PET, magnetic resonance imaging (MRI), and cognitive data, and validated on Harvard Aging Brain Study (HABS) (N = 276).

View Article and Find Full Text PDF

The present study examines whether structural and functional variability in medial temporal lobe (MTL) neocortical regions correlate with individual differences in episodic memory and longitudinal memory change in cognitively healthy older adults. To address this question, older adults were administered a battery of neuropsychological tests on three occasions: the second occasion one month after the first test session, and a third session three years later. Structural and functional MRI data were acquired between the first two sessions and included an in-scanner associative recognition procedure enabling estimation of MTL encoding and recollection fMRI BOLD effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!