Herein, a new electrochemiluminescence (ECL) strategy for enzyme-free microRNA-21 (miR-21) amplified detection was designed based on target-catalyzed hairpin assembly by combining the signal-amplification capability of both intramolecular and intermolecular ECL co-reaction. In this strategy, two hairpin DNA probes of H1 and H2 were designed as capture probes and detection probes, respectively. To be specific, the capture probes of H1 were immobilized on the multilayer interface of AuNPs and thiosemicarbazide (TSC) assembly on the single-walled carbon nanohorns decorated electrode, while the detection probes of H2 was anchored on the nanocarriers of gold nanoparticals functionalized reduced graphene oxide (Au-rGO) which were tagged with the self-enhanced ruthenium complex (PEI-Ru(ΙΙ)) in advance. Based on the target-catalyzed hairpin assembly, target miR-21 could trigger the hybridization of H1 and H2 to further be released for initiating the next hybridization process to capture a large number of H2 bioconjugates on the sensing surface. Herein, the TSC was used not only as a coupling reagent to attach the AuNPs via Au-S and Au-N bonds but also as a novel intermolecular coreactant to enhance the ECL intensity, and the PEI-Ru(ΙΙ) as emitters exhibited enhanced ECL efficiency. Therefore, a strong ECL signal was achieved by the dual amplification strategies of target recycle and the intramolecular/intermolecular co-reaction of PEI-Ru(ΙΙ) and TSC. The designed protocol provided an ultrasensitive ECL detection of miR-21 down to the sub-femtomolar level with a linear response about 6 orders of magnitude (from 1.0 × 10(-16)M to 1.0 × 10(-11)M) with a relatively low detection limit of 0.03 fM (S/N=3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2015.09.056 | DOI Listing |
Anal Chem
January 2024
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
The establishment of rapid target identification and analysis methods for antibiotic resistance genes (ARGs) is urgently needed. In this study, we unprecedently designed a target-catalyzed hairpin assembly (CHA) electrochemiluminescent (ECL) biosensor for the ultrasensitive detection of ampicillin resistance genes (ARG) based on a novel, efficient near-infrared ruthenium carbene complex/TPrA/PEI ternary ECL system with low oxidation potential. The ternary NIR-ECL system illustrated in this work displayed double ECL intensity in comparison with their corresponding traditional binary ECL system.
View Article and Find Full Text PDFAnal Chem
November 2023
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
The detection of the U94 gene in human herpesvirus 6 is crucial for early diagnosis of HHV-6 infections, which could induce acute febrile illness in infants. In this work, the first ultrasensitive electrochemiluminescence (ECL) biosensor for detecting U94 gene in Human Herpesvirus 6 was successfully designed by utilizing efficient novel metal-organic framework (MOF)-based ECL nanoemitters comprising iridium(III) complexes (Ir-ZIF-8-NH) synthesized via one-pot coordination reaction strategy as an ECL indicator and a target-catalyzed hairpin assembly (CHA) signal amplification strategy. The as-prepared ECL indicator Ir-ZIF-8-NH exhibited an approximately 2.
View Article and Find Full Text PDFTalanta
December 2023
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect the miRNA-522 in the tumor tissues of triple-negative breast cancer (TNBC) patients. Au NPs/Zn MOF heterostructure was obtained by in situ growth and used as novel luminescence probe. Firstly, zinc-metal organic framework nanosheets (Zn MOF NSs) were synthesized with Zn as the central metal ion and 2-aminoterephthalic acid (NH-BDC) as the ligand.
View Article and Find Full Text PDFAnal Chem
April 2023
The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China.
Ultra-sensitive detection of cancer-related biomarkers in serum is of great significance for early diagnosis, treatment, prognosis, and staging of cancer. In this work, we proposed a surface-enhanced Raman scattering and fluorescence (SERS/FL) dual-mode biosensor for hepatocellular carcinoma (HCC)-related miRNA (miR-224) detection using the composition of well-arranged Au nanoarrays (Au NAs) substrate coupled with the target-catalyzed hairpin assembly (CHA) strategy. The hot spots densely and uniformly distributed on the Au array offers considerably enhanced and reproducible SERS signals, along with their wide and open surface to facilitate miR-224 adsorption.
View Article and Find Full Text PDFAnal Chim Acta
March 2023
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:
The accurate and visual detection of circulating microRNA (miRNA) has attracted increasing interest due to its pivotal role in clinical disease diagnosis. Taking advantages of nucleic acid isothermal amplification and enzyme-catalyzed chromogenic reaction, here, a colorimetric sensing strategy was proposed for sensitive miRNA analysis. When the target miRNA was present, local catalytic hairpin assembly (CHA) would be triggered and proceed continuously to form dozens of double-stranded oligonucleotides with G-rich sticky ends on the gold nanoparticle, which could self-assemble into a spherical G-quadruplex (GQ)/hemin DNAzyme by binding with hemin and potassium ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!