Endosymbiotic bacteria of the genus Wolbachia often manipulate the reproductive system of their hosts to propagate themselves in host populations. Ostrinia scapulalis moths infected with Wolbachia (wSca) produce female-only progeny (sex chromosomes: ZW), whereas females cured of the infection by antibiotic treatment produce male-only progeny (ZZ). The occurrence of female- and male-only progeny has been attributed to the specific death of the opposite sex during embryonic and larval development. In this bidirectional sex-specific lethality, embryos destined to die express a phenotypic sex opposite to their genotypic sex. On the basis of these findings, we suggested that wSca carries a genetic factor that feminizes the male host, the W chromosome of the host has lost its feminizing function, and discordance between the genotypic and phenotypic sexes underlies this sex-specific death. In the present study, we examined whether the failure of dosage compensation was responsible for this sex-specific mortality. Quantitative PCRs showed that Z-linked gene expression levels in embryos destined to die were not properly dosage compensated; they were approximately two-fold higher in the male progeny of wSca-infected females and approximately two-fold lower in the female progeny of infected-and-cured females. These results support our hypothesis that misdirection of dosage compensation underlies the sex-specific death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2015.10.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!