Uncontrolled inflammation leads to several diseases such as insulin resistance, T2D and several types of cancers. The functional role of microRNAs in inflammation induced insulin resistance is poorly studied. MicroRNAs are post-transcriptional regulatory molecules which mediate diverse biological processes. We here show that miR-16 expression levels are down-regulated in different inflammatory conditions such as LPS/IFNγ or palmitate treated macrophages, palmitate exposed myoblasts and insulin responsive tissues of high sucrose diet induced insulin resistant rats. Importantly, forced expression of miR-16 in macrophages impaired the production of TNF-α, IL-6 and IFN-β leading to enhanced insulin stimulated glucose uptake in co-cultured skeletal myoblasts. Further, ectopic expression of miR-16 enhanced insulin stimulated glucose uptake in skeletal myoblasts via the up-regulation of GLUT4 and MEF2A, two key players involved in insulin stimulated glucose uptake. Collectively, our data highlight the important role of miR-16 in ameliorating inflammation induced insulin resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2015.10.004DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
induced insulin
12
insulin stimulated
12
stimulated glucose
12
glucose uptake
12
insulin
9
inflammation induced
8
expression mir-16
8
enhanced insulin
8
skeletal myoblasts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!