Development of dendritic cells (DCs) commences in the bone marrow, from where pre-DCs migrate to peripheral organs to differentiate into mature DCs in situ. However, the factors that regulate organ-specific differentiation to give rise to tissue-specific DC subsets remain unclear. Here we show that the Ras-PI3Kγ-Akt-mTOR signaling axis acted downstream of FLT3L signaling and was required for development of lung CD103(+) DCs and, to a smaller extent, for lung CD11b(+) DCs, but not related DC populations in other non-lymphoid organs. Furthermore, we show that in lymphoid organs such as the spleen, DCs depended on a similar signaling network to respond to FLT3 ligand with overlapping and partially redundant roles for kinases PI3Kγ and PI3Kδ. Thus we identified PI3Kγ as an essential organ-specific regulator of lung DC development and discovered a signaling network regulating tissue-specific DC development mediated by FLT3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2015.09.006DOI Listing

Publication Analysis

Top Keywords

signaling network
8
development
5
dcs
5
pi3-kinase-γ distinct
4
distinct essential
4
essential role
4
role lung-specific
4
lung-specific dendritic
4
dendritic cell
4
cell development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!