Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex.

Am J Physiol Heart Circ Physiol

Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Szentagothai Research Center, Medical School, University of Pecs, Pecs, Hungary; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Published: December 2015

Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698379PMC
http://dx.doi.org/10.1152/ajpheart.00463.2015DOI Listing

Publication Analysis

Top Keywords

functional hyperemia
16
p2y1 receptors
12
neurovascular coupling
12
purinergic glio-endothelial
8
glio-endothelial coupling
8
coupling neuronal
8
neuronal activity
8
role p2y1
8
somatosensory cortex
8
critical role
8

Similar Publications

Noninvasive Assessment of Vascular Function: From Physiological Tests to Biomarkers.

JACC Asia

December 2024

Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.

Vascular function is impaired by conditions such as hypertension, dyslipidemia, and diabetes as well as coronary risk factors including age, smoking, obesity, menopause and physical inactivity. Measurement of vascular function is useful not only for assessment of atherosclerosis itself but also in many other aspects such as understanding the pathophysiology, assessing treatment efficacy, and predicting prognosis of cardiovascular events. It is therefore important to accurately assess the extent of vascular function.

View Article and Find Full Text PDF

Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.

View Article and Find Full Text PDF

The aim of this study was to conduct experiments using laser speckle contrast imaging (LSCI) technology to investigate the effects of high salt diet on renal vascular reactivity in mice. LSCI is a technology for monitoring blood flow based on the laser speckle principle. It has been widely used to detect microcirculatory functions in tissues such as the skin and brain.

View Article and Find Full Text PDF

Comparative Effects of Different Exercise Types on Cardiovascular Health and Executive Function in Sedentary Young Individuals.

Med Sci Sports Exerc

January 2025

Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, Guangdong, CHINA.

Purpose: The present study aimed to compare the impacts of different exercise types on cardiovascular health and executive function in sedentary young individuals, and to determine the associations between cardiovascular function and executive function (EF) after exercise.

Methods: Sixty-three sedentary participants were randomly divided into high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), resistance exercise (RE), and control groups. Macro- and microvascular endothelial function were assessed using brachial artery flow-mediated dilation and fingertip reactive hyperemia index, respectively.

View Article and Find Full Text PDF

Evaluation of mid vs distal left anterior descending artery measures in coronary physiology assessment.

Cardiovasc Revasc Med

December 2024

Department of Internal Medicine and Division of Cardiology, Baylor Scott and White, Temple, TX, United States of America. Electronic address:

Background: Angina with no obstructive coronary artery disease (ANOCA) occurs in approximately 40 % of patients who undergo diagnostic coronary angiography for symptoms of angina. Coronary physiology assessment (CPA) is a guideline proven method to assess and diagnose these patients for an effective treatment strategy. There is currently no data regarding optimal wire or sensor position for CPA using bolus coronary thermodilution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!