Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The gastric parietal (oxyntic) cell is presented as a model for studying the dynamic assembly of the skeletal infrastructure of cell membranes. A monoclonal antibody directed to a 95-kD antigen of acid-secreting membranes of rat parietal cells was characterized as a tracer of the membrane movement occurring under physiological stimuli. The membrane rearrangement was followed by immunocytochemistry both at the light and electron microscopic level on semithin and thin frozen sections from resting and stimulated rat gastric mucosa. Double labeling experiments demonstrated that a specific and massive mobilization of actin, and to a lesser extent of spectrin (fodrin), was involved in this process. In the resting state, actin and spectrin were mostly localized beneath the membranes of all cells of the gastric gland, whereas the bulk of acid-secreting membranes appeared diffusely distributed in the cytoplasmic space of parietal cells without any apparent connection with cytoskeletal proteins. In stimulated cells, both acid-secreting material and actin (or spectrin) extensively colocalized at the secretory apical surface of parietal cells, reflecting that acid-secreting membranes were now exposed at the lumen of the secretory canaliculus and that this insertion was stabilized by cortical proteins. The data are compatible with a model depicting the membrane movement occurring in parietal cells as an apically oriented insertion of activated secretory membranes from an intracellular storage pool. The observed redistribution of actin and spectrin argues for a direct control by gastric acid secretagogues of the dynamic equilibrium existing between nonassembled (or preassembled) and assembled forms of cytoskeletal proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115437 | PMC |
http://dx.doi.org/10.1083/jcb.108.2.441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!