Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogen-doped carbon materials have attracted tremendous attention because of their high activity in electrocatalysis. In the present work, cocoon silk -- a biomass material is used to prepare porous carbon fibers due to its abundant nitrogen content. The as-prepared carbon microfibers have been activated and disintegrated into carbon nanospheres (CNS) with a diameter of 20--60 nm by a simple nitric acid refluxing process. Considering their excellent electrocatalytic activity towards the reduction of oxygen, the CNS modified electrodes are further applied in the construction of glucose amperometric biosensor using glucose oxidase as a model. The proposed biosensor exhibits fast response, high sensitivity, good stability and selectivity for glucose detection with a wide linear range from 79.7 to 2038.9 μM, and a detection limit of 39.1 μM. The performance is comparable to leading literature results indicating a great potential for electrochemical sensing application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2015.08.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!