In this report, silver nanoparticles (Ag NPs) were successfully deposited on graphene oxide (GO) sheets to form GO-Ag nanocomposite using garlic extract and sunlight and the nanocomposite modified glassy carbon (GC) electrode was applied as an electrochemical sensor for the detection of nitrite ions. The formation of GO-Ag nanocomposite was confirmed by using UV-visible absorption spectroscopy, TEM, XRD and FTIR spectroscopy analyses. Further, TEM pictures showed a uniform distribution Ag on GO sheets with an average size of 19 nm. The nanocomposite modified electrode produced synergistic catalytic current in nitrite oxidation with a negative shift in overpotential. The limit of detection (LOD) values were found as 2.1 µM and 37 nM, respectively using linear sweep voltammetry (LSV) and amperometric i-t curve techniques. The proposed sensor was stable, reproducible, sensitive and selective toward the detection nitrite and could be applied for the detection of nitrite in real water sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2015.07.050DOI Listing

Publication Analysis

Top Keywords

detection nitrite
16
nanocomposite modified
12
modified electrode
8
nitrite ions
8
go-ag nanocomposite
8
nanocomposite
5
detection
5
nitrite
5
facile synthesis
4
synthesis graphene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!