The use of nanoparticles (NPs) is of increasing significance due to their large potential for various applications. Great attention should be paid on the possible impacts of nanoparticles on the environment as large amounts of them may reach the environment by accident or voluntarily. Marine algae are potential organisms for usage in nanopollution bioremediation in aquatic system, because of their ability to adapt to long exposure to NPs. Thus, it is of prime importance to study the possible interactions of different NPs with microalgae in assessing their potential environmental risks. Most studies on potential environmental effects of ZnO and TiO2 NPs have been performed independently and following the widely accepted, standardized test systems, which had been developed for the characterization of chemicals. In this study, we have examined the cumulative effect of ZnO and TiO2 NPs on Picochlorum sp. in addition to the individual effects of these NPs over 32 days. Our results indicate that the toxicity and availability of NPs to marine algae are reduced by their aggregation and sedimentation. NPs are found to have a negative effect on algal growth and chlorophyll a concentration during the early growth stages. In contrast, the case is reversed during the late growth stages. There is no significant difference between the effect of the NPs when they are used separately and when both ZnO and TiO2 are used together in the test (P > 0.05).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-015-5493-4 | DOI Listing |
J Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Formamide condensation with Ni can generate the NC structure, widely recognized as an efficient catalyst for electrocatalytic CO reduction reaction (CORR). To improve the utilization efficiency of Ni atoms, we introduced metal oxides as substrates to modulate the growth of a formamide-Ni (FA-Ni) condensate. FA-Ni@TiO demonstrated 2.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
TiO/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Glass system of 45BO-20ZnO-30BaO-5X, (where X represents CaO, MgO, AlO, TiO, CuO and FeO) in mole percentage was investigated for gamma ray radiation shielding experimentally. Six glass composites were fabricated and the density was measured experimentally and the BZBCa glass sample has the least density with a value of 3.932 g cm and this is due to the presence of CaO in it, and the sample BZBFe has the highest density with a value of 4.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Microbiology and Biotechnology, Technical University of Moldova, MD 2028 Chisinau, Moldova.
(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.
CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!